Responsive image
博碩士論文 etd-0703106-115212 詳細資訊
Title page for etd-0703106-115212
論文名稱
Title
以時域有限差分法分析光子晶體光纖
Finite-Different Time-Domain Method for Modeling the Photonic Crystal Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-26
繳交日期
Date of Submission
2006-07-03
關鍵字
Keywords
光子能隙光纖、顏色色散、時域有限差分法、光子晶體光纖
Finite-Difference Time-Domain Method, Chromatic dispersion, Photonic Band-gap Fibers, Photonic Crystal Fibers
統計
Statistics
本論文已被瀏覽 5710 次,被下載 2847
The thesis/dissertation has been browsed 5710 times, has been downloaded 2847 times.
中文摘要
光子晶體光纖分為兩種不同種類。第一種為介質導波(index-guiding)光子晶體光纖,藉由二氧化矽的核心區域和由空氣孔洞組成的包覆層所產生的全反射機制導光。另外一種是藉由完美週期性結構所存在的能隙效應使光傳導到折射係數的核心區域。
本論文中使用由時域有限差分法衍生的compact 2D-FDTD來分析介質導波光子晶體光纖和光子能隙光纖。我們研究介質導波光子晶體光纖基模模態傳播的特性、有效折射係數、模場直徑和顏色色散。藉由調整介質導波光子晶體光纖各圈的空氣孔洞直徑和整體空氣孔洞間距,我們可以在一個很寬的波長範圍同時控制色散和色散斜率。我們也同時研究光子能隙光纖的基模模態傳播特性和能隙效應。
Abstract
Photonic crystal fibers (PCFs) are divided into two different kinds of fibers. The first one, index-guiding PCF, guides light by total internal reflection between a solid core and a cladding region with multiple air-holes. On the other hand, the second one uses a perfectly periodic structure exhibiting a photonic band-gap (PBG) effect at the operating wavelength to guide light in a low index core-region.
A compact 2D-FDTD method based on finite-difference time-domain method is formulated and is effectively applied to analysis PCFs and PBGFs. We study the propagation features of fundamental mode and the fundamental characteristics such as effective index, modal-field diameter and chromatic dispersion in index-guiding PCFs. By optimizing the air-hole diameters and the hole-to-hole spacing of index-guiding PCFs, both the dispersion and the dispersion slope can be controlled in a wide wavelength range. We also investigate the propagation features of fundamental mode and band-gap effect of PBGFs.
目次 Table of Contents
第一章 序論1.1 研究背景與目的
1.2 論文大綱

第二章 時域有限差分法
2.1 3D-FDTD演算法
2.2 Compact 2D-FDTD演算法
2.2.1 Compact 2D-FDTD理論推演
2.2.2 Compact 2D-FDTD穩定準則
2.2.3 Compact 2D-FDTD吸收邊界
2.2.4 Compact 2D-FDTD數值程序
2.3 Compact 2D-FDTD 計算二維光子晶體能隙

第三章 光子晶體光纖的模擬與特性分析
3.1 概論
3.2 傳播模態分析
3.2.1 基模模態場型分佈和極化分析
3.2.2 有效折射係數與波長關係
3.2.3 正規化頻率
3.2.4 模場直徑
3.2.5 接合損耗
3.3 顏色色散分析
3.3.1 材料色散
3.3.2 波導色散
3.3.3 顏色色散
3.3.4 顏色色散的設計

第四章 光子能隙光纖的模擬與特性分析
4.1 概論
4.2 二維光子晶體能隙
4.3 傳導模態分析

第五章 結論
參考文獻
參考文獻 References
[1] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single- mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp.1547–1549, Oct. 1996.
[2] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, Jul. 1997.
[3] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett., vol. 34, pp. 1347–1348, June 1998.
[4] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, no. 18, pp. 1325–1327, Sep. 2000.
[5] T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 588–590, Jun. 2001.
[6] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch,W. J.Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 807–809, Jul. 2000.
[7] J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fiber,” Science, vol. 282, no. 5393, pp. 1476–1478, Nov. 1998.
[8] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. on Ant. and Propag., vol. 14, pp. 302-307, May 1966.
[9] A. Asi, and L. Shafai, “Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD,” Electron Lett., Vol. 28, pp. 1451-1452, 1992
[10] A.Asi and L.Shafai, “Multiple mode analysis of waveguides using compact FDTD,” IEEE Antennas and Propagation Society International Symposium, 1993. AP-S. Digest 28 June-2 July 1993 Page(s):360 - 363 vol.1
[11] Cangellaris, A.C, ” Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides”, IEEE microwave and guided wave Letters, vol. 3, no. 1, January 1993
[12] Berenger, J.-P., “A perfectly matched layer for free-space simulation in finite-difference computer codes,” submitted to Annales des Telecommunications, 1994.
[13] Berenger, J.-P., “Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic,” Journal of computational physics 127, no. 0181, pp363–379 (1996)
[14] H. Y. D. Yang, "Finite difference analysis of 2-D photonic crystals," IEEE Tran. Microw. Theory Tech., vol. 44, pp. 2688-2695, 1996.
[15] M. Qiu, and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., vol. 87, pp. 8268-8275, 2000.
[16] H. J. Ou, T. L. Wu, “Analysis and solution of modes loss problem for computing the bandgap structure of periodic structures by 2-D FDTD method,” International Conference ATENNAS, RADAR, AND WAVE PROPAGATION (IASTED), Banff, Alberta, Canada, Jul. 2005
[17] A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method. Boston, MA: Artech House, 1995
[18] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Full vector analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24, pp. 276–278, Mar. 1999.
[19] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Amer. A, vol. 17, pp. 1333–1340, July 2000.
[20] K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, no. 7, pp. 927–933, Jul. 2002.
[21] M. Midro, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: An analytical vectorial solution,” J. Lightw. Technol., vol. 18, no. 7, pp. 1031–1037, Jul. 2000.
[22] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett., vol. 28, no. 20, pp. 1879–1881, Oct. 2003.
[23] M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett., vol. 29, no. 15, pp. 1739–1741, Aug. 2004.
[24] D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J., vol. 56, no. 5, pp. 703–718, May–Jun. 1977.
[25] R. A. Sammut, “Analysis of approximations for the mode dispersion in monomode fiber,” Electron Lett., vol. 15, pp. 590-591, 1979.
[26] A. Ferrando, E. Silvestre, and P. Andres, “Designing the properties of dispersion-flattened photonic crystal fiber,” Opt. Express 9, 687 (2001)

[27] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch,W. J.Wadsworth, and P. S. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 807–809, Jul. 2000.
[28] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultra-flattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, no. 11, pp. 790–792, Jun. 2000.
[29] K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka. (2003, Apr.). Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion. Opt. Express [Online]. 11(8), pp. 843–852.
Available: http://www.opticsexpress.org/
[30] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. Vol. 58, pp. 2059-2062, 1987.
[31] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett., vol. 61, pp.495-497, 1992.
[32] K. Saitoh, and M. Koshiba, “Confinement lossed in air-guiding photonic bandgap fibers,” IEEE Photon. Technol. Lett., Vol. 15, pp.236-238, 2003.
[33] 歐宏俊, ”三核心光子晶體光纖功率分歧器之模擬與設計,”中山大學博士論文,2006
[34] 趙嘉信, ”以向量邊界元素法研究光子晶體光纖,”中山大學博士論文,2006
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code