Responsive image
博碩士論文 etd-0703106-165055 詳細資訊
Title page for etd-0703106-165055
論文名稱
Title
尿液中游離DNA可以做為膀胱癌腫瘤標記:以DNA濃度、長度及甲基化為例
Urine cell-free DNA as bladder cancer markers: DNA concentration, length and methylation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee

口試日期
Date of Exam
2006-06-13
繳交日期
Date of Submission
2006-07-03
關鍵字
Keywords
尿液、甲基化、膀胱癌
bladder cancer, methylation, urine
統計
Statistics
本論文已被瀏覽 5685 次,被下載 8
The thesis/dissertation has been browsed 5685 times, has been downloaded 8 times.
中文摘要
膀胱癌具有高罹病率及死亡率,是第二常見的生殖泌尿器官腫瘤。找尋非侵入性的膀胱癌生物標記一直是種挑戰。近來,循環系統中的游離DNA被報導用於許多癌症的偵測,但是大多是使用血液樣本。所以,本論文的研究目的,即在於開發與評估使用較不具侵犯性的尿液來做為偵測膀胱癌的工具,特別是利用尿液中游離DNA用於評估做為膀胱癌的診斷標記。研究方向係針對creatinine-adjusted尿液游離DNA濃度、DNA完整性(DNA相對長度)及DNA 修補基因ATM 與CHK2的啟動子高度甲基化等主題進行。首先是creatinine adjusted的尿液游離DNA濃度經由real time PCR定量。在real time PCR定量主要是針對大片斷的游離DNA。結果發現,膀胱癌患者尿液中游離DNA濃度高於沒有罹患任何疾病的人。尿液中游離DNA濃度在36個膀胱癌患者的平均濃度為14.98 pg/
Abstract
Bladder cancer is the second most common genitourinary tumor and is a significant cause of morbidity and mortality. To find the noninvasive tumor marker for bladder cancer is still a challenge. Recently, the circulating cell-free DNA had been used for detection of some tumors. However, most of these studies selected the blood sample as the free DNA source. The purpose of this thesis is to develop and evaluate the more noninvasive method and tumor marker for bladder cancer detection, especially for the cell-free DNA. Three directions were addressed as followed: 1). urine cell-free DNA makers such as creatinine-adjusted cell-free DNA concentration, 2). DNA integrity (DNA length) and 3). Promoter hypermethylation for DNA repair genes. First, creatinine-adjusted urine cell-free DNA concentration was quantified via real time PCR. The real time PCR-based detection is based on detection large fragment cell-free DNA. Real time PCR-based urine cell-free DNA concentration of bladder cancer patients was higher than controls. Mean concentrations of 36 bladder cancer patients and 93 controls which detected by real time PCR were 14.98 and 1.07 pg/
目次 Table of Contents
Contents
Abstract in Chinese…………………………………………………………………… i
Abstract in English……………………………………………………………………. ii
Abbreviations…………………………………………………………………………. iii
1. Introduction………………………………………………………………………… 1
(1) Bladder cancer………………………………………………………………….. 1
(2) Bladder cancer surveillance……………………………………………………. 1
(3) Non-invasive method for bladder cancer detection……………………………. 4
(4) DNA-based molecular marker (cell-free DNA) for cancer detection………….. 4
(5) Free DNA originate from apoptotic or necrotic cells…………………………... 5
(6) Characteristics of apoptosis and necrosis………………………………………. 5
(7) Increased plasma DNA integrity in cancer patients……………………………. 5
(8) Techniques for cell-free DNA quantification…………………………………... 6
(9) Epigenetic………………………………………………………………………. 9
(10) Timing aberrant promoter methylation during tumor progression……………. 9
(11) Promoter hypermethylation as a marker for early tumor detection…………… 9
(12) Aberrant promoter hypermethylation in urine of bladder cancer patients as a non-invasive and sensitive method for cancer detection……………………... 14
(13) DNA damage checkpoints in mammals………………………………………. 14
(14) Ataxia-telangiectasia mutated (ATM)………………………………………… 20
(15) Checkpoint kinase 2 (CHK2)…………………………………………………. 20
(16) Nijmegen breakage syndrome 1 (NBS1)……………………………………... 22
2. Study aims…………………………………………………………………………. 26
3. Materials and Methods…………………………………………………………….. 27
(1) Materials……………………………………………………………………….. 27
A. Real time PCR-based 400 bp DNA quantification…………………………... 27
B. PicoGreen-based urine cell-free DNA quantification………………………... 27
C. DNA integrity analysis via multiplex PCR…………………………………... 27
D. Methylation pattern of DNA repair associated genes was performed via
methylation specific polymerase chain reaction…………………………….. 28
(2) Methods………………………………………………………………………… 29
A. Urine cell-free DNA extraction………………………………………………. 29
B. Calibration……………………………………………………………………. 30
C. Saliva DNA extraction……………………………………………………….. 31
D. Large fragment urine cell-free DNA quantification via Real time PCR……... 32
E. Urine cell-free DNA quantification by PicoGreen…………………………… 36
F. DNA integrity analysis via multiplex PCR…………………………………… 38
G. Urine DNA was modified via sodium bisulfite treatment……………………. 40
H. Methylation profile of DNA repair associated genes was performed via
methylation specific polymerase chain reaction…………………………….. 41
4. Results……………………………………………………………………………… 43
(1) Large fragment urine cell-free DNA quantification via Real time PCR……….. 43
A. Standard curve……………………………………………………………….. 43
B. Large fragment urine cell-free DNA concentration (400 bp) of bladder
cancer patients and controls…………………………………………………... 43
C. Large fragment urine cell-free DNA concentration (400 bp) may act as a
potential marker for bladder cancer patient surveillance……………………. 43
D. Sensitivity and specificity of real time PCR based detection for cell-free
DNA quantification………………………………………………………….. 44
(2) Urine cell-free DNA quantification by PicoGreen……………………………... 44
A. Standard curve………………………………………………………………... 44
B. Urine cell-free DNA concentration of patients with bladder cancer, other
cancer and/or disease and controls………………………………………….. 44
(3) DNA integrity analysis via multiplex PCR…………………………………….. 45
(4) Methylation pattern of ATM, CHK2 and NBS1 genes………………………… 45 A. Methylation pattern of ATM transcription start site in bladder cancer patients 45
B. Methylation pattern of CHK2 transcription start site in bladder cancer patients 45
5. Discussion………………………………………………………………………….. 46
6. References………………………………………………………………………….. 50
7. List of Tables………………………………………………………………………..
Table 1 AJCC 2002 TNM bladder cancer staging………………………………….. 2
Table 2 Techniques that used for DNA methylation detection……………………... 15
Table 3 Methylation of DAPK, RAR
參考文獻 References
1. Bryan, R. T., Hussain, S. A., James, N. D., Jankowski, J. A., and Wallace, D. M. Molecular pathways in bladder cancer: part 1. BJU Int, 95: 485-490, 2005.
2. Hussain, S. A. and James, N. D. Molecular markers in bladder cancer. Semin Radiat Oncol, 15: 3-9, 2005.
3. Sanchini, M. A., Gunelli, R., Nanni, O., Bravaccini, S., Fabbri, C., Sermasi, A., Bercovich, E., Ravaioli, A., Amadori, D., and Calistri, D. Relevance of urine telomerase in the diagnosis of bladder cancer. Jama, 294: 2052-2056, 2005.
4. Kirkali, Z., Chan, T., Manoharan, M., Algaba, F., Busch, C., Cheng, L., Kiemeney, L., Kriegmair, M., Montironi, R., Murphy, W. M., Sesterhenn, I. A., Tachibana, M., and Weider, J. Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology, 66: 4-34, 2005.
5. Hoglund, M. Bladder cancer, a two phased disease? Semin Cancer Biol, 2006.
6. Friedrich, M. G., Weisenberger, D. J., Cheng, J. C., Chandrasoma, S., Siegmund, K. D., Gonzalgo, M. L., Toma, M. I., Huland, H., Yoo, C., Tsai, Y. C., Nichols, P. W., Bochner, B. H., Jones, P. A., and Liang, G. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin Cancer Res, 10: 7457-7465, 2004.
7. Dulaimi, E., Uzzo, R. G., Greenberg, R. E., Al-Saleem, T., and Cairns, P. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res, 10: 1887-1893, 2004.
8. Bassi, P., De Marco, V., De Lisa, A., Mancini, M., Pinto, F., Bertoloni, R., and Longo, F. Non-invasive diagnostic tests for bladder cancer: a review of the literature. Urol Int, 75: 193-200, 2005.
9. Lai, L. C., Cheong, S. K., Goh, K. L., Leong, C. F., Loh, C. S., Lopez, J. B., Nawawi, H., Sivanesaratnam, V., and Subramaniam, R. Clinical usefulness of tumour markers. Malays J Pathol, 25: 83-105, 2003.
10. Gion, M. and Daidone, M. G. Circulating biomarkers from tumour bulk to tumour machinery: promises and pitfalls. Eur J Cancer, 40: 2613-2622, 2004.
11. Wu, T. L., Zhang, D., Chia, J. H., Tsao, K. H., Sun, C. F., and Wu, J. T. Cell-free DNA: measurement in various carcinomas and establishment of normal reference range. Clin Chim Acta, 321: 77-87, 2002.
12. Jahr, S., Hentze, H., Englisch, S., Hardt, D., Fackelmayer, F. O., Hesch, R. D., and Knippers, R. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res, 61: 1659-1665, 2001.
13. Anker, P., Mulcahy, H., Chen, X. Q., and Stroun, M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev, 18: 65-73, 1999.
14. Goessl, C., Muller, M., Straub, B., and Miller, K. DNA alterations in body fluids as molecular tumor markers for urological malignancies. Eur Urol, 41: 668-676, 2002.
15. Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., and Traganos, F. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry, 27: 1-20, 1997.
16. Wang, B. G., Huang, H. Y., Chen, Y. C., Bristow, R. E., Kassauei, K., Cheng, C. C., Roden, R., Sokoll, L. J., Chan, D. W., and Shih Ie, M. Increased plasma DNA integrity in cancer patients. Cancer Res, 63: 3966-3968, 2003.
17. Taback, B., O'Day, S. J., and Hoon, D. S. Quantification of circulating DNA in the plasma and serum of cancer patients. Ann N Y Acad Sci, 1022: 17-24, 2004.
18. Boddy, J. L., Gal, S., Malone, P. R., Harris, A. L., and Wainscoat, J. S. Prospective study of quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate disease. Clin Cancer Res, 11: 1394-1399, 2005.
19. Verma, M. and Srivastava, S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol, 3: 755-763, 2002.
20. Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., and Herman, J. G. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet, 10: 687-692, 2001.
21. Esteller, M., Corn, P. G., Baylin, S. B., and Herman, J. G. A gene hypermethylation profile of human cancer. Cancer Res, 61: 3225-3229, 2001.
22. Muto, S., Horie, S., Takahashi, S., Tomita, K., and Kitamura, T. Genetic and epigenetic alterations in normal bladder epithelium in patients with metachronous bladder cancer. Cancer Res, 60: 4021-4025, 2000.
23. Safar, A. M., Spencer, H., 3rd, Su, X., Coffey, M., Cooney, C. A., Ratnasinghe, L. D., Hutchins, L. F., and Fan, C. Y. Methylation profiling of archived non-small cell lung cancer: a promising prognostic system. Clin Cancer Res, 11: 4400-4405, 2005.
24. Laird, P. W. The power and the promise of DNA methylation markers. Nat Rev Cancer, 3: 253-266, 2003.
25. Chan, M. W., Chan, L. W., Tang, N. L., Tong, J. H., Lo, K. W., Lee, T. L., Cheung, H. Y., Wong, W. S., Chan, P. S., Lai, F. M., and To, K. F. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res, 8: 464-470, 2002.
26. Chan, M. W., Chan, L. W., Tang, N. L., Lo, K. W., Tong, J. H., Chan, A. W., Cheung, H. Y., Wong, W. S., Chan, P. S., Lai, F. M., and To, K. F. Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int J Cancer, 104: 611-616, 2003.
27. Niida, H. and Nakanishi, M. DNA damage checkpoints in mammals. Mutagenesis, 21: 3-9, 2006.
28. Khanna, K. K. and Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet, 27: 247-254, 2001.
29. Khanna, K. K., Lavin, M. F., Jackson, S. P., and Mulhern, T. D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ, 8: 1052-1065, 2001.
30. Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., and Shiloh, Y. Requirement of the MRN complex for ATM activation by DNA damage. Embo J, 22: 5612-5621, 2003.
31. Bakkenist, C. J. and Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421: 499-506, 2003.
32. Bartkova, J., Guldberg, P., Gronbaek, K., Koed, K., Primdahl, H., Moller, K., Lukas, J., Orntoft, T. F., and Bartek, J. Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer. Oncogene, 23: 8545-8551, 2004.
33. Craig, A. L. and Hupp, T. R. The regulation of CHK2 in human cancer. Oncogene, 23: 8411-8418, 2004.
34. Falck, J., Coates, J., and Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434: 605-611, 2005.
35. Su, Y. H., Wang, M., Brenner, D. E., Ng, A., Melkonyan, H., Umansky, S., Syngal, S., and Block, T. M. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn, 6: 101-107, 2004.
36. Grossman, H. B., Blute, M. L., Dinney, C. P., Jones, J. S., Liou, L. S., Reuter, V. E., and Soloway, M. S. The use of urine-based biomarkers in bladder cancer. Urology, 67: 62-64, 2006.
37. Little, B. Non-invasive methods of bladder cancer detection. Int Urol Nephrol, 35: 331-343, 2003.
38. Dey, P. Urinary markers of bladder carcinoma. Clin Chim Acta, 340: 57-65, 2004.
39. Sozzi, G., Conte, D., Leon, M., Ciricione, R., Roz, L., Ratcliffe, C., Roz, E., Cirenei, N., Bellomi, M., Pelosi, G., Pierotti, M. A., and Pastorino, U. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol, 21: 3902-3908, 2003.
40. Gal, S., Fidler, C., Lo, Y. M., Taylor, M., Han, C., Moore, J., Harris, A. L., and Wainscoat, J. S. Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. Br J Cancer, 90: 1211-1215, 2004.
41. Zancan, M., Franceschini, R., Mimmo, C., Vianello, M., Di Tonno, F., Mazzariol, C., Malossini, G., and Gion, M. Free DNA in urine: a new marker for bladder cancer? Preliminary data. Int J Biol Markers, 20: 134-136, 2005.
42. Melnikov, A. A., Gartenhaus, R. B., Levenson, A. S., Motchoulskaia, N. A., and Levenson Chernokhvostov, V. V. MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Res, 33: e93, 2005.
43. Vo, Q. N., Kim, W. J., Cvitanovic, L., Boudreau, D. A., Ginzinger, D. G., and Brown, K. D. The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene, 23: 9432-9437, 2004.
44. Bai, A. H., Tong, J. H., To, K. F., Chan, M. W., Man, E. P., Lo, K. W., Lee, J. F., Sung, J. J., and Leung, W. K. Promoter hypermethylation of tumor-related genes in the progression of colorectal neoplasia. Int J Cancer, 112: 846-853, 2004.
45. Zhang, P., Wang, J., Gao, W., Yuan, B. Z., Rogers, J., and Reed, E. CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer, 3: 14, 2004.
46. Matthai, J. and Ramaswamy, M. Urinalysis in urinary tract infection. Indian J Pediatr, 62: 713-716, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.197.123
論文開放下載的時間是 校外不公開

Your IP address is 3.15.197.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code