Responsive image
博碩士論文 etd-0703106-172831 詳細資訊
Title page for etd-0703106-172831
論文名稱
Title
聚丁二酸二乙酯、聚丁二酸二丙酯及其共聚酯之檢測分析、結晶、熔融與結晶形態
Characterization, Crystallization, Melting and Morphology of Poly(ethylene succinate), Poly(trimethylene succinate) and their Copolyesters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-09
繳交日期
Date of Submission
2006-07-03
關鍵字
Keywords
熔融行為、共聚酯、聚丁二酸二乙酯、結晶、成長速率
copolyester, poly(ethylene succinate), melting behavior, crystallization, growth rate
統計
Statistics
本論文已被瀏覽 5682 次,被下載 2240
The thesis/dissertation has been browsed 5682 times, has been downloaded 2240 times.
中文摘要
在本實驗中主要探討聚丁二酸二乙酯(PES)、聚丁二酸二丙酯(PTS)以及其不同成分比例的共聚酯(PETSAs)結構與性質間之關係。由凝膠滲透層析儀(GPC)與毛細管黏度計測量結果顯示聚酯擁有足夠大的分子量;且利用1H及13C核磁共振分析儀(NMR)定量共聚酯的組成,並以13C-NMR檢測共聚酯內單體的排列順序為無規的分佈;而後使用微差式掃瞄熱卡儀(DSC)討論聚酯之熱性質;利用熱重分析儀(TGA)與偏光顯微鏡(PLM),在氮氣環境下,觀察熱分解的起始溫度,由TGA結果顯示各個樣品間熱穩定性相似(Tsta t:246±3 °C),但使用PLM測量PES
與PETSA(95/05)在不同預熔融溫度下熔融後,觀察等溫結晶時成長速率的變
化,判斷出裂解溫度分別為213 °C 以及200 °C 其靈敏度較TGA 來的好,而加
入5 mol%的TS 即會降低其熱穩定性;接著討論共聚酯在低於熔點5~10 °C 作等
溫結晶後,以X 光繞射分析儀(WAXD)觀測其晶體結構。由WAXD以及DSC 的
結果顯示當TS 加入PES,會輕微抑制其共聚酯的結晶行為。
在實驗的第二部分,針對PES 以及PETSA(95/05)作詳細的討論。利用DSC
研究結晶動力學與熔融行為,且使用溫度調幅式微差掃描熱卡儀(TMDSC)同時
分析可逆、整體與不可逆的熱分析曲線。以Hoffman-Weeks 線性外插法求得PES
以及PETSA(95/05)的平衡熔點(Tm
0)分別為112.7 °C 與108.3 °C;從樣品在不同
等溫結晶溫度下之WAXD 圖譜得知,樣品在此溫度範圍下只存在一種結晶形
式。由DSC、TMDSC 以及WAXD 結果得知,多重熔融峰產生的原因是由雙形
態和熔融-再結晶-再熔融兩種熔融機構所影響;最後使用PLM 觀察樣品球晶成
長速率與結晶形態,分別以等溫結晶與非等溫結晶兩種實驗方法測量其成長速
率,結果顯示所得成長速率數據相近,除此之外,由非等溫結晶實驗所得成長速
率溫度範圍更廣且實驗時間大大縮短。在regime II®III 轉移溫度方面,PES 大
約是71 °C 其值與文獻相近,而PETSA(95/05)則大約65 °C。
Abstract
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters (PETSAs) with various compositions were used to investigate the structure-property relationship. The results of intrinsic viscosity and GPC have proven successful in preparing high molecular weight polyesters. The chemical compositions and the sequence distribution of co-monomers in the copolyesters were determined by NMR spectroscope. The distributions of ES unit and TS unit were found to be random. Their thermal properties were characterized using differential scanning calorimeter (DSC). The thermal stability of polyesters was analyzed by thermogravimeter (TGA) and polarized light microscope (PLM) under nitrogen. The results of TGA show that all of the samples have similar thermal stability (Tstart : 246±3 °C), but the thermal
degradation temperature of PES and PETSA(95/05) are 213 and 200 °C, respectively,
estimated from the isothermal growth rates after pre-melting at various temperatures.
The degradation temperature analyzed by PLM is more sensitive than that obtained
from TGA. The incorporation of 5 mol% of TS units into PES significantly reduces
the thermal stability of PES. In addition, wide-angle X-ray diffractograms (WAXD)
were obtained for polyesters which were crystallized isothermally at a temperature
5~10 °C below their melting temperatures. The results of WAXD and DSC indicate
that the incorporation of TS units into PES significantly inhibit the crystallization
behavior of PES.
In the second part of this study, PES and PETSA(95/05) were studied in detail.
The crystallization kinetics and the melting behavior were investigated by using DSC
in both conventional mode and modulated mode (TMDSC). The reversing, total, and
non-reversing heat flow curves were analyzed. The Hoffman-Weeks plots gave an
equilibrium melting temperature of 112.7 and 108.3 °C for PES and PETSA(95/05),
XI
respectively. Only one crystal form was found from WAXD for specimens crystallized
isothermally at various temperatures. Based on the WAXD patterns, DSC and
TMDSC thermograms, multiple endothermic melting peaks can be explained by two
mechanisms, melting-recrystallization-remelting and dual morphologies. PLM was
used to study the growth rates and morphology of the spherulites. The growth rates
measured in isothermal conditions were very well comparable with those measured by
the non- isothermal procedure. In addition, the temperature range of growth rates
detected by the non- isothermal procedure is wider than that by the isothermal method,
which is time consuming. The regime II®III transition of PES was estimated at ~ 71
°C which is very close to the literature values, and that of PETSA(95/05) was found at
~ 65 °C.
目次 Table of Contents
目錄
目錄 I
表目錄 III
Scheme Contents III
圖目錄 IV
摘要 IX
Abstract X
第一章 緒論 1
1.1 簡介 1
1.2 研究目的 2
1.3 實驗流程圖 2
第二章 文獻回顧 5
2.1 高分子之結晶動力學 (crystallization kinetics): 5
2.1.1 Avrami 方程式 5
2.1.2 多重熔融峰之行為(multiple endotherm behaviors) 6
2.1.3 平衡熔點 7
2.1.4 以球晶成長速率作區型轉移(regime transition)分析 8
2.2 偏光顯微鏡 10
2.2.1 非等溫結晶分析 13
2.3 溫度調幅式微差掃描熱卡儀 (Temperature-modulated differential scanning calorimetry,TMDSC) 13
第三章 實驗 15
3.1 實驗材料 15
3.2 實驗儀器與設備 15
3.3 檢測分析 16
3.3.1 分子量測量 16
3.3.2 化學結構分析 17
3.3.3 樣品的製備 17
3.3.4 玻璃轉移溫度(Tg)與熔融溫度(Tm)之量測 17
3.3.5 熱穩定性質 18
3.3.6 晶體結構 18
3.4 結晶動力學分析與熔融行為 18
3.4.1 WAXD分析 18
3.4.2 等溫結晶動力分析 18
3.4.2.1 等溫結晶(傳統模式) 19
3.4.2.2 熔融行為(調幅模式) 19
3.5 結晶形態、成長速率及區型轉移分析 19
3.5.1 等溫結晶 20
3.5.2 非等溫結晶 20
第四章 結果與討論 21
4.1 分子量測量 21
4.2 化學結構分析 21
4.3 熱性質分析 23
4.3.1 熔融溫度(Tm)之量測 23
4.3.2 玻璃轉移溫度(Tg)之量測 24
4.4 熱穩定性質 25
4.4.1熱重分析儀 25
4.4.2以偏光顯微鏡作熱穩定性分析 25
4.5 晶體結構 26
4.6 結晶動力學分析與熔融行為 26
4.6.1 PES與PETSA(95/05)之WAXD分析 26
4.6.2 PES之等溫結晶動力分析 26
4.6.3 PES之熔融行為 27
4.6.4 PETSA(95/05)之等溫結晶動力分析 28
4.6.5 PETSA(95/05)之熔融行為 29
4.7 結晶形態、成長速率與區型轉移分析 30
4.7.1 PES等溫結晶之球晶成長速率與區型轉移分析 30
4.7.2 PES非等溫結晶之球晶成長速率與區型轉移分析 31
4.7.3 PES之結晶形態觀察 33
4.7.4 PETSA(95/05)共聚酯等溫結晶之球晶成長速率與區型轉移分析 34
4.7.5 PETSA(95/05)共聚酯非等溫結晶之球晶成長速率與區型轉移分析 35
4.7.6 PETSA(95/05)之結晶形態觀察 37
第五章 結論 39
參考文獻 105
參考文獻 References
1. Mochizuki M, Hirami M. Structural Effects on the Biodegradation of Aliphatic Polyester. Polym Adv Technol 1997;8:203-209.
2. Takiyama E, Harigai N, Hokari T. Production of Aliphatic Polyester. Japanese Patent No.H5-70566, 1993.
3. Takiyama E, Seki S. Production of Aliphatic Polyester. Japanese Patent No.H5-70572, 1993.
4. Takiyama E, Fujimaki T, Seki S, Hokari T, Hatano Y. Method for Manufacturing Biodegradable High Molecular Aliphatic Polyester. US Patent No.5310782, 1994.
5. Takiyama E, Hatano Y, Fujimaki T, Seki S, Hokari T, Hosogane T, Harigai N. Method of Producing a High Molecular Weight Aliphatic Polyester and Film Thereof. US Patent No.5436056, 1995.
6. Fujimaki T. Processability and Properties of Aliphatic Polyesters, “BIONOLLE”, Synthesized by Polycondensation reaction. Polym Degrad Stab 1998;59:209-214.
7. Gan Z, Abe H, Doi Y. Biodegradable Poly(ethylene succinate) (PES). 1. Crystal Growth Kinetics and Morphology. Biolmacromolecules 2000;1:704-712.
8. Gan Z, Abe H, Doi Y. Biodegradable Poly(ethylene succinate) (PES). 2. Crystal Morphology of Melt-Crystallized Ultrathin Film and Its Change after Enzymatic Degradation. Biolmacromolecules 2000;1:713-720.
9. Qiu Z, Ikehara T, Nishi T. Crystallization Behavior of Biodegradable Poly(ethylene succinate) from The Amorphous State. Polymer 2003;44: 5429-5437.
10. Qiu Z, Komura M, Ikehara T, Nishi T. DSC and TMDSC Study of Melting Behaviour of Poly(butylenes succinate) and Poly(ethylene succinate). Polymer 2003;44:7781-7785.
11. Papageorgiou GZ, Bikiaris DN. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005; 46:12081-12092.
12. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y. Structural Effects upon Enzymatic Hydrolysis of Poly(butylenes succinate-co-ethylene succinate)s. Macromolecules 1997;30:7403-7407.
13. Gan Z, Abe H, Doi Y. Crystallization, Melting, and Enzymatic Degradation of Biodegradable Poly(butylenes succinate-co-14 mol% ethylene succinate) Copolyester. Biomacromolecules 2001;2:313-321.
14. Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T. Studies on Syntheses and Physical Properties of Biodegradable Aliphatic Poly(butylene succinate-co- ethylene succinate)s and Poly(butylenes succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002;78:107-117.
15. Lee Y, Porter RS. Double-Melting Behavior of Poly(ether ether ketone). Macromolecules 1987;20:1336-1341.
16. Lee Y, Porter RS, Lin JS. On the Double-Melting Behavior of Poly(ether ether ketone). Macromolecules 1989;22:1756-1760.
17. Bassett DC, Olley RH, Al Raheil IAM. On Crystallization Phenomena in PEEK. Polymer 1988;29:1745-1754.
18. Janimak JJ, Cheng SZD, Zhang A. Isotacticity Effect on Crystallization and Melting in Polypropylene Fraction: 3. Overall Crystallization and Melting Behaviour. Polymer 1992;33:728-735.
19. Wei CL, Chen M, Yu FE. Temperature Modulated DSC and DSC Studies on the Origin of Double Melting Peaks in Poly(ether ether ketone). Polymer 2003;44: 8185-8193.
20. Hoffman. JD, Weeks JJ. Melting Process and the Equilibrium Melting Temperature of Polychlorotrifluoroethylene. J Res Nat Bur Stand 1962;66A: 13-28.
21. Hoffman JD, Miller RL. Kinetics and crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 1997;38:3151-3212.
22. Hoffman JD, Davis G.T, Lauritzen Jr. JI. Treatise on Solid State Chemistry, Vol. 3, Crystalline and Noncrystalline Solids, Hannay, N. B. Ed., Plenum, New York, 1976, Chap. 7.
23. Gedde UW. Polymer Physics, Chapman & Hall, London, 1996.
24. Nesse WD, Introduction to Optical Mineralogy 2nd, University of Northern Colorado, 1991.
25. Chung CT, Chem M. Spherulite Growth Rate of Poly(ether ether ketone) (PEEK). Polym Prepr 1992;33:420-421.
26. Chen M, Chung CT. Analysis of Crystallization Kinetics of Poly(ether ether ketone) by a Nonisothermal Method. J Polym Sci, Part B: Polym Phys 1998;36:2393-2399.
27. Di Lorenzo ML, Silvestre C. Non-isothermal Crystallization of Polymers. Prog Polym Sci 1999;24:917-950.
28. Di Lorenzo ML, Cimmino S, Silvestre C. Non-isothermal Crystallization of Isotactic Polypropylene Blended with Poly(α-pinene). 2. Growth Rates. Macromolecules 2000;33:3828-3832.
29. Di Lorenzo ML. Determination of Spherulite Growth Rate of Poly(L-lactic acid) using Combined Isothermal and Non-isothermal Procedures. Polymer 2001;42:9441-9446.
30. Di Lorenzo ML. Spherulite Growth Rates in Binary Polymer Blends. Prog Polym Sci 2003;28:663-689.
31. Silvestre C, Cimmino S, Pirozzi B. Morphology of A Melt Crystallized iPP/HDPE/hydrogenated Hydrocarbon Resin Blend. Polymer 2003;44:4273-4281.
32. Ren MQ, Mo ZS, Chen QY, Song JB, SY. Wang, Zhang HF, Zhao QX, Crystallization Kinetics and Morphology of Nylon 1212. Polymer 2004;45: 3511-3518.
33. Na B, Wang Y, Zhang Q, Fu Q. Shish and Its Relaxation Dependence of Re-Crystallization of Isotactic Polypropylene From an Oriented Melt in The Blends with High-Density Polyethylene. Polymer 2004;45:6245-6260.
34. Zhu B, He Y, Asakawa N, Yoshie N, Nishida H, Inoue Y. Polymorphic Crystallization and Melting-Recrystallization Behavior of Poly(3- hydroxypropionate). Macromolecules 2005;38:6455-6465.
35. Zheng Q, Shangguan Y, Yan SK, Song YH, Peng M, Zhang QB. Structure, Morphology and Non-isothermal Crystallization Behavior of Polypropylene Catalloys. Polymer 2005;46:3163-3174.
36. Wurm A, Merzlyakov M, Schick C. Reversible Melting Probe by Temperature Modulated Dynamic Mechanical and Calorimetric Measurements. Colloid Polym Sci 1998;276:289-296.
37. Wurm A, Merzlyakov M, Schick C. Crystallization of Polymers Studied by Temperature-modulated Techniques (TMDSC, TMDMA). J Macromol Sci Phys 1999;B38:693-708.
38. TA Instruments , Applications Library, TN45 and TA210
39. Reading M. Modulated DSC- A New Way Forward in Materials Characterization. Trends Polym Sci 1993;8:248-253.
40. Yamadera R, Murano M. The Determination of Randomness in Copolyesters by High Resolution Nuclear Magnetic Resonance. J Polym Sci Part A-1: Polym Chem 1967;5:2259-2268.
41. Newmark RA. Sequence Distribution in Polyethylene/Tetramethylene Terephthalate Copolyesters by 13C-NMR. J Polym Sci Polym Chem 1980;18: 559-563.
42. Ko CY, Chem M, Wang HC, Tseng IM. Sequence Distribution, Crystallization and Melting Behavior of Poly(ethylene terephthalate-co-trimethylene terephthalate) Copolyesters. Polymer 2005;46:8752-8762.
43. Backson SCE, Kenwright AM, Richards RW. A 13C-n.m.r. Study of Transesterification in Mixtures of Poly(ethylene terephthalate) and Poly(butylenes terephthalate). Polymer 1995;36:1991-1998.
44. Shyr TW, Lo CM, Ye SR. Sequence Distribution and Crystal Structure of Poly(ethylene/trimethylene terephthalate) Copolyesters. Polymer 2005;46: 5284-5298.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code