Responsive image
博碩士論文 etd-0703107-152823 詳細資訊
Title page for etd-0703107-152823
論文名稱
Title
利用光子晶體設計邏輯閘及塞取濾波器
The Designs of Logic Gates and Drop Filter Based on Photonic Crystals
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-17
繳交日期
Date of Submission
2007-07-03
關鍵字
Keywords
擷取濾波器、光子晶體、分光器、馬赫詹德干涉儀
Beam splitter, Mach-Zehnder interferometer, Photonic crystals, Drop Filter
統計
Statistics
本論文已被瀏覽 5665 次,被下載 22
The thesis/dissertation has been browsed 5665 times, has been downloaded 22 times.
中文摘要
由於光子晶體有能隙這個特性,許多這方面的研究被提出來。當波長在能隙範圍內,光將無法在晶體內做傳輸。所以,在晶體內放入一些缺陷,因為它破壞了原來的週期性排列,利用此方法可以使訊號沿著波導傳輸。而耦合腔波導是其中一種波導。因為光子靠著耦合且無輻射損耗在耦合腔波導內傳輸。因此,此種波導被廣泛地利用在多種元件上。
本論文我們一樣用耦合腔波導來設計元件。並討論了馬赫詹德干涉儀與分光器的一些特性。然後我們利用這些特性去設計兩個邏輯結構。其包含一個輸入訊號及兩個控制訊號端。而控制訊號端的狀態將可以控制在輸出端的電場大小。另外,我們提出一個四個通道的濾波器。此濾波器可以讓1310、1490及1550 nm等三個波長分別在不同波導管內做傳輸。因此,這個濾波器可應用在光纖到家(Fiber To The Home)中當作一個波長解多工器。最後,我們對環形波導結構的特性去做探討。藉由改變其中一個控制通道的相位,我們可以控制輸入訊號是由第一輸出端或是第二輸出端輸出。這樣我們可以利用此結構作為一個開關。
Abstract
Due to the property of the photonic crystal, like bandgap, many researches on them are discussed. Photons with wavelength within the bandgap cannot propagate through the crystal. Then placing some defects in the crystal, because the periodic arrangement is destroyed, it is possible to build a waveguide to guide light along certain path. One kind is coupled cavity waveguide. The photons can propagate in a coupled-cavity waveguide by coupling without radiation losses. So it is widely used to implement a variety of optical devices.
In this thesis, we use coupled cavity waveguide to construct devices. And the characteristics of Mach-Zehnder interferometer and power splitter are discussed. Then we propose two logic gate structures with an input port and two control ports. The state of control port determines the electric field at the output port. Besides, the four-port channel drop filter is proposed. It will make the three wavelengths ─1310, 1490 and 1550 nm─ propagate in different waveguides. So it could be used as a wavelength demultiplexer for FTTH. Finally, the property of the PC-based rat-race circuit is investigated. By adjusting the phase of the control signal, we could decide the input signal to exit from output 1 or output 2. In this way, we could use it to function as a switch.
目次 Table of Contents
Acknowledgements i
Abstract iii
Contents v
Figures Caption vii
List of Tables xvi
List of Symbols xvii

Chapter 1: Introduction
1.1 Overview 1
1.2 Research Motivations 2
1.3 Organizations of the Thesis 3
Chapter 2: Basic Theory and Simulation Method
2.1 Introduction 6
2.2 Plane Wave Expansion Method (PWE) 6
2.3 Finite Difference Time Domain Method (FDTD) 11
Chapter 3: Mach-Zehnder Interferometer and Logic Gates Based on Coupled Cavity Waveguides
3.1 Introduction 21
3.2 Analysis 23
3.2.1 The Structures of PC Waveguide 23
3.2.2 The Transmission Characteristics of Coupled Cavity Waveguide 25
3.3 Power Splitter Based on Coupled Cavity Waveguides 26
3.4 Mach-Zehnder Interferometer employing Coupled Cavity Waveguides 28
3.5 Logic Gate Based on Mach-Zehnder Interferometer 29
3.6 Summary 32
Chapter 4: A Design of Four-Port Channel Drop Filters Based on 2D PCs
4.1 Introduction 56
4.2 Analysis 58
4.2.1 Coupled Mode Theory 58
4.3 Numerical Results 62
4.4 Summary 64
Chapter 5: Ideal 3-dB Splitter-Combiner and Switch in Photonic Crystals
5.1 Introduction 70
5.2 Analysis 71
5.3 Numerical Results 81
5.4 Summary 83
Chapter 6: Conclusions
6.1 Summary 91
6.2 Suggestions for Future Researches 92
References 92
參考文獻 References
[1]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics Electronics,” Phys. Rev. Lett., Vol.58, pp.2059-2062, 1987.
[2]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol.58, pp.2486-2489, 1987.
[3]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the flow of light”, Princeton University Press, New York, 1995.
[4]S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, Vol.407, pp.608-610, 2000.
[5]C. Jin, S. Fan, S. Han, and D. Zhang, “Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration,” IEEE J. Quantum Electron., Vol.39, pp.160-165, 2003.
[6]M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, ”Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, Vol.12, pp.1551-1561, 2004.
[7]M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express, Vol.10, pp.1279-1284, 2002.
[8]A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., vol. 80, pp.1698-1700, 2002.
[9]A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett., Vol.80, pp.547-549, 2002.
[10]A. Yariv, Y. Xu, R. K. Lee, and A. scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., Vol.24, pp.711-713, 1999.
[11]S. Olivier, C. Smith, M. Rattier, H. Benisty, and C. Weisbuch, T. Krauss, R. Houdré and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett., Vol.26, pp.1019-1021, 2001.
[12]W. J. Kim, W. Kuang, and J. D. O’Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Lett., Vol.11, pp.3431-3437, 2003.
[13]A. Martı´nez, A. Garcı´a, P. Sanchis, and J. Martı, “Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,” J. Opt. Soc. Am. A, Vol.20, pp.147-150, 2003.
[14]M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett., Vol.87, pp.253902-1-4, 2001.
[15]Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett., Vol.65, pp.2650-2653, 1990.
[16]K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B, Vol.41, pp.10188-10190, 1990.
[17]K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett., Vol.65, pp.3152-3155, 1990.
[18]B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E., Vol.69, pp.066615, 2004.
[19]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun., Vol.85, pp.306-322, 1995.
[20]G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett., Vol.11, pp.169-174, 1996.
[21]J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simple description for waveguiding in photonic bandgap materials,” Microwave Opt. Technol. Lett., Vol.14, pp.261-266, 1997.
[22]C. Kittel, “Introduction to Solid State Physics,” Wiley, 1996.
[23]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagat., Vol.14, pp.802-807, 1966.
[24]M.S. Min, and C.H.Teng, “The Instability of the Yee Scheme for the “Magic Time Step”,”, J. computational Phys. Vol.166, pp.418-422, 2001.
[25]S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, “Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses,” J. Appl. Phys., Vol.90, pp.4321-4327, 2001.
[26]A. Martinez, F. Cuesta, A. Griol, D. Mira, and J. Garcia, “Photonic-crystal 180° power splitter based on coupled-cavity waveguides,” Appl. Phys. Lett., Vol.83, pp.3033-3035, 2003.
[27]A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach–Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett., Vol.28, pp.405-407, 2003.
[28]T. P. White, C. Martijn de Sterke, R. C. McPhedran, and T. Huang, “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express, Vol.12, pp.3035-3045, 2004.
[29]A. Martinez, J. Marti, J. Bravo-Abad, and J. Sanchez-Degesa, ”Wavelength Demultiplexing Structure Based on Coupled-Cavity Waveguides in Photonic Crystals,” Fiber and Integrated Optics, Vol.22, pp.151-160, 2003.
[30] M. Bayindir, B. Temelkuran, and E. Ozbay, ”Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett., Vol.84, pp.2140–2143, 2000.
[31]D. Leuenberger, R. Ferrini, and R. Houdre, “Ab initio tight-binding approach to photonic-crystal based coupled cavity waveguide,” J. Appl. Phys., Vol.95, pp.806-809, 2004.
[32]K. Guven, and E. Ozbay, “Coupling and phase analysis of cavity structures in two-dimensional photonic crystals,” Phys. Rev. B, Vol.71, pp.085108-1-7, 2005.
[33]E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of Localized Coupled-Cavity Modes in Two-Dimensional Photonic Bandgap Structures,” IEEE J. Quantum Electron., Vol.38, pp.837-843, 2002.
[34]Stefano Boscolo, Michele Midrio, and Carlo G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quantum Electron., Vol.38, pp.47-53, 2002.
[35]T. B. Yu1,2, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A: Pure Appl. Opt., Vol.7, pp.37-42, 2007.
[36] S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at _1.6-μm wavelengths built with a two-dimensional photonic crystal,” Opt. Lett., Vol.27, pp.1400-1402, 2002.
[37]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.3902-3904, 2000.
[38]S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides high transmission and impedance matching,” Opt. Lett., Vol.27, pp.1001-1003, 2002.
[39]Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Kanamoto, K. Asakawa, and K. Inoue, “Design, fabrication, and characterization of a two-dimensional photonic-crystal symmetric Mach-Zehnder interferometer for optical integrated circuits,” Appl. Phys. Lett., Vol.86, pp.141104-1-3, 2005.
[40]Y.. Sugimoto, H. Nakamura, Y. Tanaka, N. Ikeda, K. Asakawa, and K. Inoue, “High-precision optical interference in Mach-Zehnder-type photonic crystal waveguide,” Opt. Express, Vol.13, pp.96-105, 2004.
[41]H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y.Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express, Vol.12, pp.6606-6614, 2004.
[42]A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two dimensional photonic crystal on silicon-on-isulator substrate,” Opt. Express, Vol.14, pp.12394-12400, 2006.
[43]T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-Division Demultiplexing Using Photonic crystal waveguides,” IEEE Photonic Technol. Lett., Vol.18, pp.226-228, 2006.
[44]M. Y. Tekeste, and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express, Vol.14, pp.7931-7942, 2006.
[45]L. Dobrzynski, B. Djafari-Rouhani, A. Akjouj, J. O. Vasseur, and J. Zemmouri, “Resonant tunneling between two continua,” Phys. Rev. B, Vol.60, pp.10628-10631, 1999.
[46]Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E, Vol.62, pp.7389-7404, 2000.
[47]R. Stoffer, H. J. W. M. Hoekstra, R. M. Deridder, E . Vangroese, and F. P. H. V anbeckum, ” Numerical studies of 2D photonic crystals Waveguides, coupling between waveguides and filters,” Opt. Quantum Electron., Vol.32, pp.947-961, 2000.
[48]K. Nara, J. Hasegawa and T. Tsuda, “PLC-MZI-type 3-Wavelength Wideband WDM Filter Array for FTTH Video Distribution Services,” Furukawa Review, No.28, 2005.
[49]H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express., Vol.14, pp.2446-2458, 2006.
[50]H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Design and analysis of two-dimensional photonic crystals channel filter,” Opt. Commun., Vol.266, pp.342-348, 2006.
[51]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express, Vol.3, pp.4-11, 1998
[52]S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel Drop Tunneling through Localized States,” Phys. Rev. Lett., Vol.80, pp.960-963, 1998.
[53]C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of Modes Analysis of Resonant Channel Add–Drop Filters,” IEEE J. Quantum Electron., Vol.35, pp.1332-1331, 1999.
[54]C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B, Vol.59, pp.15882-15892, 1999.
[55]Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda1, “Two-dimensional photonic-crystal-slab channel drop filter with flat-top response,” Opt. Express, Vol.13, pp.2512-2530, 2005.
[56]S. Kim, I. Park, and H. Lim, “Proposal for ideal 3-dB splitters–combiners in photonic crystals,” Opt. Lett., Vol.30, pp.257-259, 2005.
[57]C. E. Saavedra, and Y. Zheng, “Ring-Hybrid Microwave Voltage-Variable Attenuator Using HFET Transistors,” IEEE Trans. Micro. Theory Tech., Vol.53, pp.2430-2434, 2005.
[58]S. Fan, S. G. Johnson, and J. D. Joannopoulos “Waveguide branches in photonic crystals,” J. Opt. Soc. Am.B, Vol.18, pp.162-165, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.50.83
論文開放下載的時間是 校外不公開

Your IP address is 3.145.50.83
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code