Responsive image
博碩士論文 etd-0703108-113801 詳細資訊
Title page for etd-0703108-113801
論文名稱
Title
自旋不穩態系統之超導性與磁性研究
Superconductivity and magnetism in spin frustrated systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-07
繳交日期
Date of Submission
2008-07-03
關鍵字
Keywords
超導量子干涉儀、自旋不穩態、尖晶石結構、比熱、超導、磁學
spin frustrated system, spinel structure, SQUID, specific heat, superconductivity, magnetism
統計
Statistics
本論文已被瀏覽 5703 次,被下載 1571
The thesis/dissertation has been browsed 5703 times, has been downloaded 1571 times.
中文摘要
由於自旋不穩態表現出長程有序的行為(例如超導,鐵磁,反鐵磁)上有其解釋上的困難。因此當長程有序在自旋不穩態系統中被發現時,則吸引科學家們的目光。然而在什麼樣的晶體結構中容易與自旋不穩態產生關聯呢? 尖晶石(spinel structure)結構就是一個非常適合用來研究自旋不穩態的系統,它是一個包含了由四面體及八面體所構成的獨特晶體。由於其晶體結構原本就屬於幾何不穩態,因此,當過渡元素金屬與尖晶石結構相結合時,電子自旋與晶格結構之間的複雜作用力便衍生出許多複雜的物理系統。 在此論文中,一共包含了兩個超導體系統(LiTi2O4 and NaxCoO2.yH2O)。LiTi2O4 是在所有spinel 結構中Tc 最高(約11 K)的超導體,而另一個含水的新型超導體則是在2003年被發現(Tc~4.5 K). 我們利用實驗室獨特的低溫比熱技術得知在兩個不同超導系統中,LiTi2O4是屬於第二類BCS超導體(其超導能隙屬於各向同性的),然而NaxCoO2.yH2O則屬於具有線結點(其超導能隙屬於各向異性的)的新型超導體。我們的結論也相當地符合其他實驗技術驗證的結果。因此,透過低溫比熱在磁場下來研究超導體的特性在物理上是非常具有說服力的。然而,在一典型的鐵磁半導體材料中(CdCr2S4),我們藉由量測物體隨溫度變化的磁化率及介電常數中,發現其數值在外加電場及磁場下會有相當明顯的變化。因此,由我們的實驗數據中證實了自旋有序與電偶極在外加電磁場下透過晶格的作用有著非常顯著的相互影響,進而支持CdCr2S4為一新穎的多鐵電材料。
Abstract
Order-disorder phenomena in geometrical frustrated systems are the attractive topics because of the intrinsic fluctuation. Among the geometrical frustrated systems, the material with spinel structure (AB2X4) is one of the appropriate candidates to investigate the long range ordering behavior. Corner sharing of tetrahedron and edge sharing of octahedron in the unique structural network of spinel structure are the characteristics for geometrical frustration. Hence, to study the 3d transition metal substituted in spinel system which leads to fruitful physical behavior becomes rapidly attractive. In this dissertation, long range ordering behavior in spin frustrated systems including three interesting materials LiTi2O4, NaxCoO2.yH2O, and CdCr2S4 were investigated. LiTi2O4 was found to show the highest superconducting transition temperature (Tc ~ 11 K) while first hydrated superconductor NaxCoO2.yH2O (Tc~ 4.5 K) was discovered in 2003. Superconductivity of LiTi2O4 and NaxCoO2.yH2O had been measured and analyzed by low temperature specific heat under magnetic field. According to the analyses of specific-heat results, isotropic (s-wave) and nodal (d-wave) gaps of superconducting pairing symmetry were proposed for LiTi2O4 and NaxCoO2.yH2O, respectively. Finally, LiTi2O4 was confirmed to be a typical BCS-like, fully gapped, and electron-phonon moderate-coupling type-II superconductor. Not like the case of LiTi2O4, the superconducting parameters of NaxCoO2.yH2O, such as Tc, HC2 and pairing symmetry, were strongly dependent on synthesized conditions. However, the evidence of nodal gap was found to be an intrinsic feature in this peculiar material NaxCoO2.yH2O. In the ferromagnetic insulator CdCr2S4, we first found several interesting features induced by external electric field in dielectric and magnetization measurements. Exchangestriction was proposed to be associated with the colossal change of dielectric constant value and suppression of magnetization under external electric and magnetic field in CdCr2S4. Therefore, our results supported that CdCr2S4 was a typical multiferroic material. In a conclusion, the intrinsic fluctuation of spin frustrated systems wasnecessary to pay more attention in the near future due to its fruitful physical properties and behind theoretical description.
目次 Table of Contents
Content
Abstract 1
Content 4
Chapter 1: Introduction
1.1: What is geometrically frustrated system? 6
1.2: What happen when spin is involved in
geometrically frustrated system? 9
1.3: What is interesting in spinel structure? 12
Chapter 2: Experimental instrumentation and
methods
2.1: Low Temperature Specific Heat(LTSH)
2.1.1: Hardwards of LTSH 17
2.1.2: Softwards of LTSH 22
2.1.3: Chip preparation 29
2.2: Magnetic Properties Measurement System
(MPMS)
2.2.1: Hardwards 31
2.2.2: Reciprocating sample option (RSO) 41
Chapter 3: Theory of superconductivity and
mechanisms of magnetism
3.1: Superconductivity
3.1.1: Introduction 45
3.1.2: BCS Theory 47
3.1.3: Thermodynamic quantities 51
3.1.4: Multigap analyses of superconductivity by
specific-heat measurement 56
3.2: Mechanisms of magnetism
3.2.1: Introduction 60
3.2.2: Mechanism of exchange interactions 62
3.2.3: Magnetic semiconductors 66
Chapter 4: Investigated systems
4.1: Magnetic field dependence of low temperature
specific heat of spinel oxide superconductor
LiTi2O4 73
4.2: Evidence of nodal superconductivity in
Na0.35CoO2·1.3H2O:a specific heat study 93
4.3: Observation of electric field induced ferroelectric
ordering in multiferroic CdCr2S4 106
Chapter 5: Conclusion 117
Publication list 120
參考文獻 References
Chapter 1
1 P. Schiffer and A. P. Ramirez, Comments Condens. Matter Phys. 18, 21 (1996).
2 N. P. Ong and R. J. Cava, Science 305, 52 (2008).
3 I. Terasaki, Y. Sasago and K. Uchinokura. Phys. Rev. B 56, R12865 (1997).
4 M. Mekata, Physics Today 56, 12 (2003).
5 A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 64, 2070 (1990).
6 S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim & S.-W. Cheong, Nature, 418, 856 (2002)
7 "Oxide Pyrochlores - A Review", M. A. Subramanian, G. Aravamudan and G. V. Subba Rao, Progress in Solid State Chemistry, 15, 55 (1983).
8 E. J. W. Verwey and P.W. Haayman, Physica (Utrecht) 8, 979 (1941).
9 J. K. Burdett, G.L. Price and S.L. Price, J. Am. Chem. Soc. 104 92 (1982).
10 D. Dai and M.-H. Whangbo, J. Chem. Phys. 121 672 (2004).

Chapter 2
1 H. Kamerlingh Onnes, Leiden comm.,120b, 122b, 124c (1911).
2 J. Bardeen, L. N. Copper, and J. R. Schrieffer, Phys, Rev, 108, 1175 (1957).
3 G. Bednorz and K. A. Müller, Z. Phys. B64, 189 (1986).
4 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
5 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410, 63 (2001).
6 H. D. Yang, J.-Y. Lin, H. H. Li, F. H. Hsu, C. J. Liu, S.-C. Li, R.-C. Yu, and C.-Q. Jin, Phys. Rev. Lett. 87, 167003 (2001).
7 K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
8 M. Tinkham, Introduction to superconductivity, second edition, McGraw-Hill (1996)
9 C. Kittel, Introduction to solid state physics, seven edition, Wiley, (1996).
10 C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Letters 9, 307 (1964).
11 G. E. Volovik, JETP Lett. 58, 469 (1993).
12 C. L. Huang, J.-Y. Lin, C. P. Sun, T. K. Lee, J. D. Kim, E. M. Choi, S. I. Lee, and H. D. Yang, phys, Rev, B 73, 012502 (2006).
13 C. L. Huang, J.-Y. Lin, Y. T. Chang, C. P. Sun, H. Y. Shen, C. C. Chou, H. Berger, T. K. Lee, and H. D. Yang, phys, Rev, B 76, 212504 (2007).
14 Y. Sun and K. Maki, Phys. Rev. B 51, 6059 (1995).
15 K. Maki, P. Thalmeier, and H. Won, Phys Rev. B 65, 140502(R) (2002).
16 D. Mattis, The theory of magnetism. Harper and Row Publishers. New York, London.
17 A. J. Millis, Phys. Rev. B 55, 6405 (1997).
18 J. A. Alonso, M. J. Marnez-Lope, M. T. Casais, P. Velasco, J. L. Martnez, M. T. Fernandez-Daz and J. M. de Paoli, Phys. Rev. B 60, R15024 (1999).
19 C. Zener, Phys. Rev. 82, 403 (1951).
20 Because numbers of references is available, please check the following authors to obtain required information, such as E. L. Nagaev, P. Anderson.
21 M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
22 Y. Tokura, Rep. Prog. Phys. 69 797 (2006). E. Dagotto, cond-mat/0302550, M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 70, 1039(1998).
23 P. Wachter, The optical, electric and magnetic properties of the europium chalkogenides and the rare earth pnictides, CRC Crit. Rev. in Sol. State. Sci. 3, 189 (1972).
24 E. L. Nagaev, Colossal Magnetoresistance and Phase separation in Magnetic Semiconductor. (Imperial College Press, 2002).
25 A. Amith and G. L. Gunsalus, J. Appl. Phys. 40, 1020 (1969).
26 K. P. Belov, L. I. Koroleva, S. D. Batorova et al., Pis’ma ZhETF, 22, 304 (1975).
27 K. P. Belov, L. I. Koroleva, and L. N. Tovmasyan, Fiz. Tverd. Tela 19, 622 (1977).
Chapter 4-1
1D. C. Johnston, J. Low Temp. Phys. 25, 145 (1976).
2R. W. McCallum, D. C. Johnston, C. A. Luengo, and M. B. Maple, J. Low Temp. Phys. 25, 177 (1976).
3J. M. Heintz, M. Drillon, R. Kuentzler, Y. Dossmann, J. P. Kappler, O. Durmeyer, and F. Gautier, Z. Phys. B - Condens. Matter 76, 303 (1989).
4D. C. Johnston, C. A. Swenson, and S. Kondo, Phys. Rev. B 59, 2627 (1999).
5D. P. Tunstall, J. R. M. Todd, S. Arumugam, G. Dai, M. Dalton, and P. P. Edwards, Phys. Rev. B 50, 16541 (1994).
6E. G. Moshopoulou, J. Am. Ceram. Soc. 82, 3317 (1999).
7M. R. Harrison, P. P. Edwards, and J. B. Goodenough, J. Solid State Chem. 54, 136 (1984); ibid Phil. Mag. B 52, 679 (1985).
8F. C. Xu, Y. C. Liao, M. J. Wang, C. T. Wu, K. F. Chiu, and M. K. Wu, J. Low Temp. Phys. 131, 569 (2003).
9O. Durmeyer, J. P. Kappler, E. Beaurepaire, J. M. Heintz, and M. Drillon, J. Phys.: Condens. Matter 2, 6127 (1990).
10S. Satpathy and R. M. Martin, Phys. Rev. B 36, 7269 (1987).
11S. Massidda, J. Yu, and A. J. Freeman, Phys. Rev. B 38, 11352 (1988).
12 T. Itoh, K. Kitazawa, and S. Tanaka, J. Phys. Soc. Jpn. 53, 2668 (1984).
13P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, cond-mat/0311467 (unpublished).
14C. M. Varma, cond-mat/0312385 (unpublished).
15D. Guyomard and J. M. Tarascon, Solid State Ionics 69, 222 (1994); S. Shi, C. Ouyang, D. S. Wang, L. Chen, and X. Huang, Solid State Commun. 126, 531 (2003).
16S. Kondo, D. C. Johnston, C. A. Swenson, F. Borsa, A. V. Mahajan, L. L. Miller, T. Gu, A. I. Goldman, M. B. Maple, D. A. Gajewski, E. J. Freeman, N. R. Dilley, R. P. Dickey, J. Merrin, K. Kojima, G. M. Luke, Y. J. Uemura, O. Chmaissem, and J. D. Jorgensen, Phys. Rev. Lett. 78, 3729 (1997).
17C. P. Sun and H. D. Yang (unpublished).
18H. D. Yang, J. -Y. Lin, H. H. Li, F. H. Hsu, C. -J. Liu, S. -C. Li, R. -C. Yu, and C. -Q. Jin, Phys. Rev. Lett. 87, 167003 (2001).
19W. L. McMillan, Phys. Rev. 167, 331 (1968).
20V. Z. Kresin and V. P. Parkhomenko, Sov. Phys. Solid State 16, 2180 (1975).
21 B. F. Woodfield, D. A. Wright, R. A. Fisher, and N. E. Phillips, Phys. Rev. Lett. 83, 4622 (1999).
22J. -Y. Lin, P. L. Ho, H. L. Huang, P. H. Lin, Y. -L. Zhang, R.-C. Yu, C. -Q. Jin, and H. D. Yang, Phys. Rev. B 67, 52501 (2003).
23A. P. Ramirez, Phys. Lett. A 211, 59 (1996).
24A. P. Ramirez, N. Stücheli, and E. Bucher, Phys. Rev. Lett. 74, 1218 (1995).
25M. Hedo, Y. Inada, E. Yamamoto, Y. Haga, Y. Onuki, Y. Aoki, T. D. Matsuda, H. Sato, and S. Takahashi, J. Phys. Soc. Jpn. 67, 272 (1998).
26J. E. Sonier, M. F. Hundley, J. D. Thompson, and J. W. Brill, Phys. Rev. Lett. 82, 4914 (1999).
27C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964).
28G. E. Volovik, JETP Lett. 58, 469 (1993).
29H. D. Yang and J. -Y. Lin, J. Phys. Chem. Solid. 62, 1861 (2001).
30N. R. Werthamer, E. Helfand and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
31B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
32T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).
33C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, New York, 1996).
34B. Batlogg, R. J. Cava, L. W. Rupp, Jr., A. M. Mujsce, J. J. Krajewski, J. P. Remeika, W. F. Peck, Jr., A. S. Cooper, and G. P. Espinosa, Phys. Rev. Lett. 61, 1670 (1988).
35S. J. Chen, C. F. Chang, H. L. Tsay, H. D. Yang, and J.-Y. Lin, Phys. Rev. B 58, 14753 (1998).
36A. Junod, in Studies of High Temperature Superconductors, edited by A. V. Narlikar (Nova Science, Commack, New York, 1996), Vol. 19, p. 1.
37S. Nishizaki, Y. Maeno, and Z. Mao, J. Phys. Soc. Jpn. 69, 572 (2000).
38M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. J. Yamaura, and Z. Hiroi, Phys. Rev. Lett. 87, 197001 (2001).
39K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature (London) 422, 53 (2003).
40S. Yonezawa, Y. Muraoka, Y. Matsushita, and Z. Hiroi, J. Phys.:Condens. Matter 16, L9 (2004).
Chapter 4-2
1K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
2J. G.. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).
3J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
4R. E. Schaak, T. Klimczuk, M. F. Foo, and R. J. Cava, Nature 424, 527 (2003).
5G. Baskaran, Phys. Rev. Lett. 97, 97003 (2003).
6Q.-H. Wang, D. –H. Lee, and P. A. Lee, Phys. Rev. B 69, 92504 (2004).
7B. Kumar and B. S. Shastry, Phys. Rev. B 68, 104508 (2003).
8A. Tanaka and X. Hu, Phys. Rev. Lett. 91, 257006 (2003).
9Y. Tanaka, Y. Yanase, and M. Ogata, J. Phys. Soc. Jpn 73, 319 (2004).
10Y. Kobayashi, M. Yokoi, and M. Sato, J. Phys. Soc. Jpn 72, 2161 (2003); J. Phys. Soc. Jpn 72, 2453 (2003).
11T. Fujimoto, G. Q. Zhang, Y. Kitaoka, R. L. Meng, J. Cmaidalka, C. W. Chu, Phys. Rev. Lett. 92, 047004 (2004).
12K. Ishida, Y. Ihara, Y. Maeno, C. Michioka, M. Kato, K. Yoshimura, K. Takada, T. Sasaki, H. Sakurai, and E. Takayama-Muromachi, J. Phys. Soc. Jpn. 72, 3041 (2003).
13K. A. Moler, D. L. Sisson, J. S. Urbach, M. R. Beasley, and A. Kapitulnik, Phys. Rev. B 55, 3954 (1997).
14S. J. Chen, C. F. Chang, H. L. Tsay, H. D. Yang, and J.-Y. Lin, Phys. Rev. B 58, R14 753 (1998).
15B. Revaz, J.-Y. Genoud, A. Junod, A. Erb, and E. Walker, Phys. Rev. Lett. 80, 3364 (1998).
16D. A. Wright, J. P. Emerson, B. F. Woodfield, J. E. Golden, R.A. Fisher, and N. E. Phillips, Phys. Rev. Lett. 82, 1550 (1999).
17F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001).
18H. D. Yang, J.-Y. Lin, H. H. Li, F. H. Hsu, C.-J. Liu, S.-C. Li, R.-C. Yu and C.-Q. Jin, Phys. Rev. Lett. 87, 167003 (2001).
19J.-Y. Lin, P. L. Ho, H. L. Huang, P. H. Lin, Y. –L. Zhang, R. -C. Yu, C. –Q. Jin, and H. D. Yang, Phys. Rev. B 67, 52501 (2003).
20G. Cao, C. Feng, Y. Xu, W. Lu, J. Shen, M. Fang, and Z. Xu, J. Phys. Condens. Matter 15, L519 (2003).
21R. Jin, B. C. Sales, P. Khalifah, and D. Mandrus, Phys. Rev. Lett. 91, 217001 (2003).
22F. C. Chou, J. H. Cho, P. A. Lee, E. T. Abel, K. Matan, and Y. S. Lee, Phys. Rev. Lett. 92, 157004 (2003).
23B. G. Ueland, P. Schiffer, R. E. Schaak, M. L. Foo, V. L. Miller, and R. J. Cava, Physica C 402, 27 (2004).
24B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Physica C 402, 106 (2004).
25H. D. Yang and J.-Y. Lin, J. Phys. Chem. Solid. 62, 1861 (2001).
26S. Nishizaki, Y. Maeno, and Z. Mao, J. Phys. Soc. Jpn. 69, 572 (2000).
27A. Kanigel, A Keren, L. Patdagan, K. B. Chashka, P. King, and A. Amato, Phys. Rev. Lett. 92, 257007 (2004).
28H. Sakurai, K. Takada, S. Yoshii, T. Sasaki, K. Kindo, and E. Takayama-Muromachi, Phys. Rev. B 68, 132507 (2003).
29M. M. Maśaka, M. Mierzejewski, B. Andrzejewski, M. L. Foo, T. Klimczuk, and R. J. Cava, cond-mat/0402503.
30P. Badica, T. Kondo, K. Togano, K. Yamada, cond-mat/0402235.
31T. Sasaki, P. Badica, N. Yoneyama, K. Yamada, K. Togano, N. Kobayashi, cond-mat/0402355.
32G. E. Volovik, JETP Lett. 58, 469 (1993).
Chapter 4-3
1Eerenstein, W., Mathur, N. D. & Scott, J. F., Nature 442, 759 (2006).
2Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. & Tokura, Y., Nature 426, 55 (2003).
3Fox, D. L. & Scott, J. F., J. Phys. C 10, L329 (1977).
4Hill, N. A., J. Phys. Chem. B 104, 6694 (2000).
5Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H. -A., Tsurkan, V. & Loidl, A., Nature 434, 364 (2005).
6Baltzer, P. K., Lehmann, H. W. & Robbins, M., Phys. Rev. Lett. 15, 493 (1965).
7Harbeke, G. & Pinch, H., Phys. Rev. Lett. 17, 1090 (1966).
8Wakamura, K. & Arai, T., J. Appl. Phys. 63, 5824 (1988).
9Lehmann, H. W. & Robbins, M., J. Appl. Phys. 37, 1389 (1966).
10Baltzer, P. K., Wojtowicz, P. J., Robbins, M. & Lopatin, E., Phys. Rev. 151, 367 (1966).
11Gnezdilov, V., Lemmens, P., Pashkevich, Yu. G., Scheib, P., Payen, Ch., Choi, K. Y., Hemberger, J., Loidl, A. & Tsurkan, V., cond-mat/0701080 (2007).
12Martin, G. W., Kellog, A. T., White, R. L. & White, R. M., J. Appl. Phys. 40, 1015 (1969).
13Catalan, G. & Scott, J. F., Nature 448, E4 (2007).
14Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H. -A., Tsurkan, V. & Loidl, A., Nature 448, E5 (2007).
15Rahman, M., Bhattacharyya, S. S. & Chaudhuri, B. K., Liquid Crystals 33, 1207 (2006).
16Hemberger, J., Rudolf, T., Krug von Nidda, H. -A., Mayr, F., Pimenov, A., Tsurkan, V. & Loidl, A., Phys. Rev. Lett. 97, 087204 (2006).
17Chaudhuri, B. K., Atake, T., Ganguli1, S. & Chihara, H., J. Phys. Soc. Jpn. 49, 608 (1980).
18Sandy, F. & Jones, R. V., Phys. Rev. 168, 481 (1968).
19Mitsui, T. Phys. Rev. 111, 1259 (1958).
20Shiga, M. & Nakamura, Y., J. Phys. Soc. Jpn. 26, 24 (1969).
21Waskowska, A., Gerward, L., Staun Olsen, J. & Malicka, E., J. Phys. Cond. Matter 14, 12423 (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code