Responsive image
博碩士論文 etd-0703108-173947 詳細資訊
Title page for etd-0703108-173947
論文名稱
Title
摻鉻釔鋁石榴石雙纖衣晶體光纖雷射
Cr4+:YAG Double-clad Crystal Fiber Laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-22
繳交日期
Date of Submission
2008-07-03
關鍵字
Keywords
釔鋁石榴石、濾波片、雙纖衣、模態、居量反轉、極化、螢光、閥值
yttrium aluminum garnet, fluorescence, double-clad, polarization, mode, threshold, filter, population inversion
統計
Statistics
本論文已被瀏覽 5638 次,被下載 0
The thesis/dissertation has been browsed 5638 times, has been downloaded 0 times.
中文摘要
近年來由於光通訊需求的快速成長,因而帶動了通訊用1.3 μm~1.6 μm波長雷射光源的發展,摻鉻釔鋁石榴石(Cr4+:YAG)固態雷射將相當有潛力滿足此寬頻之需求,且固態雷射具有高品質輸出模態、壽命長、結構簡單、體積小諸優點,因此其潛力將不容忽視。

本論文採用小尺寸雙纖衣之晶體光纖做為雷射增益介質,在晶體的兩端鍍上光學薄膜做成共振腔,可大幅縮小固態雷射之體積,降低成本,簡化固態雷射架構,同時提高散熱效率。實驗採雷射加熱基座生長法生長晶體光纖,此法不僅可輕易生長出直徑極小之單晶,且生長速度快、耗能低、控制容易,並能夠於玻璃包覆外層加上銅鋁合金包覆來提高散熱效率,將此元件加以研磨、拋光、鍍膜即可製成Cr4+:YAG晶體光纖雷射。同時對晶體光纖中之Cr2O3與CaO摻雜濃度分佈、螢光與折射率分佈、以及傳輸損耗與吸收係數做了量測與分析。

我們得到最低的雷射閾值功率為0.75 mW,小於任何文獻記述掺鉻雷射之閾值功率五百倍以上,斜率效率達到6.9%。能夠產生超低閥值功率是由於低傳輸損耗0.08 dB/cm以及纖心有較高的激發光源強度所致,如此超低閥值的工作條件使得雙纖衣晶體光纖雷射能夠與目前的光通訊系統相容,同時我們也針對所研製之晶體光纖雷射進行模擬與實驗結果做比對。
Abstract
During last decade, the fast-growing communication need has promoted the development of 1.3 μm~1.6 μm laser light source. The Cr4+ doped YAG solid-state laser has potential to meet this broadband demand. In addition, diode-laser-pumped solid state laser has the merits of high laser beam quality, long lifetime, compact, and simple structure.

In this thesis, crystal fiber was used as the laser gain medium, and coated with optical thin film at its end facets as the laser cavity. Using this configuration, the volume and cost of the laser can be appreciatively reduced, and the heat dissipation can be improved. The laser-heated-pedestal-growth method was used to grow crystal fiber, which can obtain small diameter at very fast rate. Outside the glass clad Cr4+:YAG crystal fiber, Al-Cu alloy was employed as the heat sink to improve heat dissipation. After grinding, polishing, and coating of this device, the Cr4+:YAG crystal fiber laser was fabricated. Some characteristics of Cr4+:YAG crystal fiber, such as the distribution of Cr2O3 and CaO doping concentration, fluorescence intensity, refraction index, propagation loss, and absorption coefficient were measured and analyzed. A record-low threshold of 0.75 mW was achieved. It is more than 500 times lower than any previously reported Cr4+:YAG lasers, and a slope efficiency of 6.9% was obtained. The ultralow-threshold lasing is made possible by the low propagation loss of 0.08 dB/cm and the high pump intensity of the core. Such a low-threshold operation makes the double-clad crystal fiber laser be compatible to present optical communication systems. In the meanwhile, some simulations of the laser output power have been developed to predict the experimental results.
目次 Table of Contents
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 Cr4+:YAG晶體光纖雷射原理 5
2.1 晶體特性 5
2.2 電荷補償 14
2.3 能階模型 17
2.4 傳輸模態 20
第三章 晶體光纖生長與元件備製 24
3.1 晶體生長架構及方法 24
3.2 晶體光纖之金屬包覆 32
3.3 元件之研磨與拋光 35
第四章 Cr4+:YAG雙纖衣晶體光纖雷射之特性量測 39
4.1 Cr4+:YAG雙纖衣晶體光纖之成份與螢光分析 39
4.1.1 成份分析 39
4.1.2 折射率與螢光分佈量測 43
4.2 雷射共振腔架構 46
4.3 雷射共振腔之光學鍍膜 48
4.4 Cr4+:YAG雙纖衣晶體光纖雷射之耦光 52
4.5 雷射系統架構與雷射效率分析 54
4.5.1 雷射系統架構 54
4.5.2 實驗結果分析 55
4.6 Cr4+:YAG雙纖衣晶體光纖雷射之極化量測 59
第五章 Cr4+:YAG雙纖衣晶體光纖雷射模擬 61
5.1 雷射理論架構 61
5.2 模擬數值分析 69
第六章 結論 77
參考文獻 80
中英對照表 84
附錄:雷射模擬程式 88
參考文獻 References
[1] M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated-miniature pedestal growth apparatus for single-crystal fibers,” Opt. Lett. 11, pp. 437-439 (1986).

[2] D. B. Gasson and B. Cockayne, “Oxide crystal growth using gas lasers,” J. Materials Sci. 5, pp. 100-104 (1970).

[3] J. Stone and C. A. Burrus, “Self-contained LED-pumped single crystal Nd:YAG fiber laser,” Fiber Integrated Opt. 2, pp. 19-46 (1979).

[4] N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35-1.45 μm,” Sov. J. Quant. Electron 18, pp.73-74 (1988).

[5] P. M. W. French, N. H. Rizvi, and J. R. Taylor, “Continuous-wave mode-locked Cr4+:YAG laser,” Opt. Lett. 18, pp. 39-41 (1993).

[6] A. Sennaroglu and C. R. Pollock, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, pp. 390-392 (1994).

[7] A. Sennaroglu and C. R. Pollock, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, pp. 930-937 (1995).

[8] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr, Ca:Y3Al5O12 laser crystal grown by the laser heated pedestal growth method,” J. Cryst. Growth 183, pp. 614-621 (1998).

[9] I. T. Sorokina, S. Naumov, E. Sorokin, and E. Wintnter, “ Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Opt. Lett. 24, pp. 1578-1580 (1999).

[10] D. J. Ripin, C. Chudobs, J. T. Gopinath, J. G. Fujimoto, and E. P. Ippen, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Opt. Lett. 27, pp. 61-63, 2002.

[11] S. Ishibashi and K. Naganuma, “Diode pumped Cr4+:YAG single crystal fiber laser,” in Advanced Solid-State Lases, OSA Technical Digest, Davos, Switzerland, p. 103 (2000).


[12] J. L. Caslavsky and D. J. Viechinicki, J. Master. Sci., 15, p. 1709 (1980)

[13] H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE J. Quant. Electron. 29, pp. 2508-2512 (1993).

[14] S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12,” J. Cryst. Growth, 180, pp. 81-84 (1997).

[15] B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fiber using a divalent codopant,” J. Appl. Phys. 70, pp. 3775-3777 (1991).

[16] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, pp. 1578-1586 (2001).

[17] G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Laser, Vol. 5 of OSA Proceedings Series, M. Shnad and H. P. Jenssen, eds. (Optical Society of America, Washington, D. C. (1989)), pp. 66-70.

[18] N. I. Borodin, A. G. Okhrimchuk, and A. V. Shestakov, “Polarizing spectroscopy of Y3Al5O12, SrAl2O4, and CaAl2O4 crystals containing Cr4+,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds, Vol. 13 OSA Proceeding Series (Optical Society of America, Washington, D. C., 1992), pp. 42-46.

[19] V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, pp. 1040-1042 (1988).

[20] V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromiumactivated forsterite for near-infrared excitation:Is Cr4+ the lasing ion?,” Appl. Phys. Lett. 53, pp. 2590-2592 (1988).

[21] H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, pp. 2593-2595 (1988).

[22] H. Eilers, U. Hömmerich, S. M. Jacobsen, and W. M. Yen, “Spectrocopy and dynamics of Cr4+: Y3Al5O12,” Phys. Rev. B 49, pp. 15505-15513 (1994).



[23] A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr, Ca:Y3Al5O12,” J. Cryst. Growth 140, pp. 349-354 (1994).

[24] Http://www.webelements.com/

[25] Y. Chang, “Ultrafast optical pulse generation from Cr4+-doped yttrium aluminum garnet tunable solid-state laser,” Ph. D. dissertation, National Library of Canada (1999).

[26] C. J. Ballhausen, “Introduction to Ligand Field Theory,” McGraw-Hill, New York, p. 113 (1962).

[27] S. Kück, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers 15, pp. 334-338 (1993).

[28] A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+: forsterite laser near room temperature,” IEEE J. Quant. Electron. 34, pp. 1996-2005 (1998).

[29] 余樹楨,“晶體之結構與性質”,渤海堂,2000年。

[30] C. A. Burrus and J. Stone, “Single-crystal fiber optical devices : A Nd:YAG fiber laser,” Appl. Phys. Lett. 26, p. 318 (1975).

[31] G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, pp. 108-110 (1990).

[32] L. Hesseling and S. Redfield, “Photorefractive holographic recording in strontium barium niobate fiber,” Opt. Lett. 13, pp. 877-879 (1988).

[33] R. S. Feigelson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science 240, pp. 1642-1645 (1988).

[34] 張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,1933年。

[35] R. S. Feigelson, W. L. Kway and R. K. Route, “Single crystal fbers by the laser-heated pedestal growth method,” Opt. Eng. 24, pp. 1102-1107 (1985).

[36] Mark W. Zemansky and R. H. Dittman, “Heat and thermodynamics,” McGraw-Hill. 7, p. 93 (1997).

[37] Taylor Lyman, “Metallography, structures and phase diagrams,” American society for metals 8 (1973).

[38] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang, “Passively Q-switched quasi-three-level laser and its intracavity frequency doubling,” Appl. Opt. 41, pp. 1075-1081 (2002).

[39] I. T. Sorokina, S. Naumov, E. Sorokin, and A. G. Okhrimchuk, ”The mechanisms of slow bleaching in YAG:Cr4+ under CW pumping,” SPIE 4350, pp. 99-105 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.187.233
論文開放下載的時間是 校外不公開

Your IP address is 3.137.187.233
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code