Responsive image
博碩士論文 etd-0703108-174537 詳細資訊
Title page for etd-0703108-174537
論文名稱
Title
摻鉻釔鋁石榴石晶體光纖雷射及摻鐿釔鋁石榴石-玻璃光纖雷射之光學薄膜研製
The Study and Fabrication of Optical Coatings on Cr4+:YAG Crystal Fiber Laser and Yb3+:YAG-silica Fiber Laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-22
繳交日期
Date of Submission
2008-07-03
關鍵字
Keywords
薄膜研製、摻鉻釔鋁石榴石、光纖雷射、鍍膜、摻鐿釔鋁石榴石-玻璃
optical thin films, Yb:YAG-silica, Cr:YAG, fiber laser, coating
統計
Statistics
本論文已被瀏覽 5706 次,被下載 0
The thesis/dissertation has been browsed 5706 times, has been downloaded 0 times.
中文摘要
近年來光通訊產業需求的急速發展,使得可調雷射光源應用於光傳輸網路系統中的需求增加,而摻鉻釔鋁石榴石(Cr4+:YAG)晶體光纖於光通訊波長的寬頻特性,使其具有不可或缺的重要性。而摻鐿釔鋁石榴石-玻璃光纖(Yb3+:YAG-silica)在高功率雷射領域,亦佔有一席之地。

本論文採用由雷射加熱基座生長法生長之光纖做為雷射增益介質,藉由熔融石英包覆技術可將晶體光纖之纖心直徑縮小至11 μm之摻鉻釔鋁石榴石雙纖衣晶體光纖。此外調整生長之雷射功率,使得摻鐿釔鋁石榴石與披離擴散互熔,成功的生長出纖心直徑約125 μm之摻鐿釔鋁石榴石-玻璃光纖,形成波導結構。並直接在上述兩種光纖兩端鍍上光學薄膜形成共振腔,可大幅縮小雷射之體積,降低成本,簡化雷射架構。此外並配合銅鋁合金包覆來提高雷射之散熱效率,成功研製出室溫下世界紀錄之0.75 mW超低激發閥值(ultralow threshold),及室溫下世界紀錄最高雷射效率(6.9%)之摻鉻釔鋁石榴石晶體光纖雷射,以及具有室溫下低激發閥值(100 mW)、高效率(67.2%)之摻鐿釔鋁石榴石-玻璃光纖雷射。

在雷射薄膜研製發展方面,已成功製鍍出匹配異質結構光纖(即單、雙纖衣結構)端面之高反射薄膜,形成對激發光源高穿透率與激發輻射光子高反射率之雷射共振腔,降低雷射損耗及提高雷射效率,達成室溫下低損耗閥值、高效率且穩定的雷射輸出;並藉由不同膜層厚度及堆疊設計,改善膜層與基板存在之介面效應,完成高品質之光學薄膜。
Abstract
Recently, with the escalating demands for optical communication, the need to use broadband laser light sources in optical communication network system has increased. Henceforward, the broadband characteristes of Cr4+:YAG crystal fiber possess signifies its indispensability. Furthermore, Yb3+:YAG-silica also has its advantages in high power laser domain.

In this thesis, the crystal fiber grown by the laser heated pedestal growth method is used as the laser gain medium with fused silica packaging technique. Cr4+:YAG double-clad crystal fiber with a core diameter as small as 11 μm was achieved. Moreover, a Yb3+:YAG-silica layer was formed due to the strong inter-diffusion between silica capillary and Yb3+:YAG crystal. When the silica all diffused into the Yb3+:YAG, a Yb3+:YAG-silica fiber with 125-μm core was obtained with waveguide structure. By directly coating the optical thin films onto the end faces of the two types of fibers, the laser configuration is compact and cost effective. Besides, heat dissipation is also improved. By Cu-Al alloy packaging, a record-low Cr4+:YAG double-clad crystal fiber laser was achieved with threshold of 0.75 mW and a record-high slope efficiency of 6.9% at room temperature. And we also successfully fabricate the Yb3+:YAG-silica fiber laser with low threshold (100 mW) and high efficiency (67.2%) at room temperature.

In fiber laser development, we have successfully fabricated the coating of high-reflective thin films which match the faces of fiber heterostructure (single cladding and double cladding structures). It forms a cavity with anti-reflectivity for pumping wavelength and high-reflectivity for lasing wavelength. For these reasons, low threshold, high slope efficiency, and stable laser output have been achieved. Finally, through different thin-film designs, the strain effect between thin film and heterosubstrate is significantly reduced, which facilitates the realization of high performance fiber lasers.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 x

第一章 緒論 1
第二章 光學薄膜基本原理 3
2.1 光學薄膜的膜特徵矩陣 3
2.2 光學薄膜材料特性與光學常數分析 8
2.3 膜成長理論 18
2.4 光學薄膜電場分佈 20
第三章 雷射樣品特性及製備 22
3.1 雷射加熱基座生長法 22
3.2 光纖之光學特性 28
3.3 包覆及端面處理 30
第四章 電子槍蒸鍍系統架構及量測儀器 34
4.1 電子槍蒸鍍系統 34
4.1.1 真空系統 34
4.1.2 電子槍系統 36
4.1.3 離子輔助系統 39
4.1.4 監控系統 43
4.2 膜層檢測 47
4.3 視窗程式(薄膜記錄檔之自動化分析) 50

第五章 Cr4+:YAG晶體光纖及Yb3+:YAG-silica玻璃光纖雷射之端面鍍膜 54
5.1 薄膜於金屬包覆晶纖端面出現之問題與處理 54
5.1.1 薄膜於金屬包覆晶纖端面出現之問題 54
5.1.2 光學薄膜與異質界面之溫控處理 56
5.2 雷射共振腔與端面鍍膜 58
5.2.1 Cr4+:YAG晶體光纖雷射 60
5.2.2 Yb3+:YAG-silica玻璃光纖雷射 70
5.3 薄膜沈積微觀結構之分析 84
5.3.1 薄膜沈積之剖面結構 84
5.3.2 薄膜沈積之表面結構 85
5.4 離子輔助鍍膜 89
5.4.1 電子槍蒸鍍系統架構 89
5.4.2 薄膜材料特性分析 93
第六章 結論 105

參考文獻 107
中英對照表 111
參考文獻 References
[1]M. L. Fulton, “Application of ion assisted deposition using a gridless end-Hall ion source for volume manufacturing of thin-film optical filter,” Proceedings of SPIE 2253, 374 (1994).
[2]J. R. McNeil, A. C. Barron, S. R. Wilson, and W. C. Herrmann, “Ion- assisted deposition of optical thin film: low energy vs high energy bombardment,” Applied Optics 23, 552 (1984).
[3]H. Kuster and J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70, 43 (1980).
[4]J. J. McNally, G. A. Al-Jumaily, and J. R. McNeil, “Ion-assisted deposition of Ta2O5 and Al2O3 thin film,” Journal of Vacuum Science Technology 3, 437 (1986).
[5]G. A. Al-Jumaily, J. J. McNally, and J. R. McNeil, “Effect of ion assisted deposition on optical scatter and surface microstructure of thin films,” Journal of Vacuum Science Technology 3, 651 (1985).
[6]F. Flory, Emile Pelletier, G. albrand, and Y. Hu, “Surface optical coatings by ion assisted deposition techniques: study of uniformity,” Applied Optics 28, 2952 (1989).
[7]J. R. McNeil, G. A. Al-Jumaily, K. C. Jungling, and A. C. Barron, “Properties of TiO2 and SiO2 thin film deposited using ion assisted deposition,” Applied Optics 24, 486 (1985).
[8]D. T. Wei, “ Ion beam interference coatings for ultralow optical loss,” Applied Optics 28, 2813 (1989).
[9]李正中,“薄膜光學與鍍膜技術”, 3rd edition (藝軒出版社,2002)。
[10]Y. Y. Liou, ”Determination of the optical constant profiles of thin weakly absorbing inhomogeneous films,” Japanese Journal of Applied Physics 34, 1952 (1995).
[11]R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Journal of Physics E: Scientific Instruments 16, 1214, (1983).
[12]J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” Journal of Vacuum Science Technology 11, 666 (1974).
[13]K. H. Guenther, “Physical and chemical aspects in the application of thin films on optical elements,” Applied Optics 23, 3612 (1984).
[14]U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5 (1996).
[15]G. D. Nunzio, M. D. Giulio, M. C. Ferrara, M. R. Perrone, L. Protopapa, and L. Vasanelli, “Deposition of SiO2 films with high laser damage thresholds by ion-assisted electron-beam evaporation,” Applied Optics 38, 1237 (1999).
[16]A. F. Stewart and A. H. Guenther, “Laser-induced particle emission as a precursor to laser damage,” Applied Optics 27, 4423 (1998).
[17]D. Milam, W. H. Lowdermilk, F. Rainer, J. E. Swain, C. K. Carniglia, and T. T. Hart, “Influence of deposition parameters on laser-damage threshold of silica-tantala AR coatings,” Applied Optics 21, 3689 (1982).
[18]O. Arnon and P. Baumeister, “Electric field distribution and the reduction of laser damage in multilayers,” Applied Optics 19, 1853 (1980)
[19]E. Hucker, H. Lauth, and P. Weissbrodt, “Review of structural influence on the laser damage threshold of oxide coatings,” Proceedings of SPIE 2714, 316 (1996).
[20]S. C. Seitel and J. O. Porteus, “Laser damage round-robin testing (1.06-m) with 13-nsec pulse duration and 40-μm spot size,” Applied Optics 23, 3767 (1984).
[21]K. Rajasree, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Determination of the laser-induced damage threshold of bulk polymer samples at 1.06 μm using the pulsed photothermal deflection technique,” Laser Division, Department of Physics, Cochin University of Science and Technology 4, 591 (1993).
[22]G. A. Magel, M. M. Fejer, and R. L. byer, “Quasi-phase-matched second harmonic generation of blue light in periodically LiNbO3,” Applied Physics Letters 56, 108 (1990).
[23]D. B. Gasson, and B. Cockayne, “Oxide crystal growth using gas laser,” Materials Science 5, 100 (1970).
[24]呂登復, “實用真空技術”, 國興出版,民國九十一年。
[25]H. R. Kaufman and R. S. Robinsion, “Operation of broad-beam source,” US Patent number 4684848 (1987).
[26]M. Gilo and N. Croitoru, “Properties of TiO2 film prepared by ion-assisted deposition using a gridless end–Hall ion source,” Thin Solid Films 283, 84 (1996).
[27]M. Gilo and N. Croitoru, “Study of HfO2 film prepared by ion-assisted deposition using a gridless end–Hall ion source,” Thin Solid Films 350, 203 (1999).
[28]汪建民,“材料分析”, 中國材料科學協會,民國八十七年。
[29]吳秀菁,汪若文,林美吟,“儀器總覽-材料分析儀器”, 行政院國家科學委員會精密儀器發展中心,民國八十七年。
[30]P. M. W. French, N. H. Rizvi, and J. R. Taylor, “Continuous-wave mode-locked Cr4+:YAG laser,” Optics Letter 18, 39 (1993).
[31]I. T. Sororkina, S. Naumov, E. Sorokin, and E. Wintnter, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser,” Optics Letters 24, 1578 (1999).
[32]D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr4+:YAG laser,” Optics Letter 27, 61 (2002).
[33]S. Ishibashi and K. Naganuma, "Diode pumped Cr4+:YAG single crystal fiber laser," in Advanced Solid-State Lasers, OSA Technical Digest, Davos, Switzerland, MD4 (2000).
[34]J. Y. Yi, L. H. Chen, and S. L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE Journal of Quantum Electronics 42, 791 (2006)
[35]C. C. Lee and J. C. Hsu “Technique for deposition of multiplayer interference thin film using only one coating material,” ROC Patent Invention No. 137551 (2001).
[36]J. J. Wharton “Microstructure related propertied of optical thin films,” Ph.D. Dissertation, University of Arizona (1984).
[37]P. G. Verly, “Optical coating synthesis by simultaneous refractive-index and refinement of inhomogeneous films,” Applied Optics 37, 7327 (1998).
[38]K. Cai, M. Muller, J. Bossert, A. Rechtenbach, and K. D. Jandt, “Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate,” Applied Surface Science 250, 252 (2005).
[39]H. Niederwald, “Low-temperature deposition of optical coatings using ion assistance,” Thin Solid Films 21, 377 (2000).
[40]P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Applied Optics 22 , 178 (1983).
[41]http://www.thinfilmproducts.umicore.com
[42]H. Niederwald, S. Laux, M. Kennedy, U. Schallenberg, A. Duparre, M. Mertin, N. Kaiser, and D. Ristau,” Ion-assisted deposition of oxide materials at room temperature by use of different ion sources,” Applied Optics 38, 3610 (1999).
[43]M. Gilo and N. Croitoru, “Properties of TiO2 films prepared by ion-assisted deposition using a gridless end-Hall ion source,” Thin Solid Films 283, 84 (1996).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.239.123
論文開放下載的時間是 校外不公開

Your IP address is 18.191.239.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code