Responsive image
博碩士論文 etd-0703111-231740 詳細資訊
Title page for etd-0703111-231740
論文名稱
Title
脈衝雷射對鋁片與氧化鋁粉末的剝熔蝕碎化效應
Pulsed laser ablation/fragmentation of Al plate and α-Al2O3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-09
繳交日期
Date of Submission
2011-07-03
關鍵字
Keywords
鋁金屬片、剛玉粉末、蝕刻薄化、碎化效應、熱震影響區、熱震效應
Al, PLA, heat and shock affected zone, fragmentation, minimum interspacing
統計
Statistics
本論文已被瀏覽 5617 次,被下載 0
The thesis/dissertation has been browsed 5617 times, has been downloaded 0 times.
中文摘要
本文分為相關的兩部份: (一)、鋁金屬片於空氣及液體環境下之脈衝雷射剝熔蝕,著重於坑洞周圍之相與微觀組織變化; (二)、脈衝雷射於水中碎化剛玉粉末效應。
第一部份以脈衝雷射在空氣和純水環境下,利用奈秒脈衝雷射以不同能量密度單一脈衝剝熔蝕純鋁多晶(粒徑約為3微米)靶材,以便比較產生的孔洞、熱影響區、微結構及奈米級氧化凝聚物回鍍並龜裂的差異。藉由掃瞄和穿透式電子顯微鏡的觀察發現大氣與水兩種環境對於所得孔洞直徑及周圍噴濺程度的影響力為大氣>水,且隨能量越高孔洞皺摺程度就越大;而環境對熱影響區範圍的影響趨勢為大氣>水,同樣隨能量越剝蝕範圍就越大。此外在空氣環境下分成已蝕刻薄化和未蝕刻兩種片狀靶材進行剝熔蝕,發現蝕刻過後的試片因厚度縮減,及蝕刻坑洞周圍於雷射剝熔蝕的過程中有較多的氧化凝聚物回鍍成比金屬鋁片熱導性差熱膨脹係數低的氧化鋁薄膜,因此於冷卻過程中出現坑洞附近較大的龜裂片及遠處的小龜裂片。穿透式電子顯微鏡觀察進一步發現,於空氣中回鍍於基材表面的氧化凝聚物,無論所使用的脈衝雷射能量多少,主要都是奈米級(5-20nm)不規則形狀的
α-Al2O3與θ-Al2O3、γ-Al2O3、δ*-Al2O3顆粒共存,而多晶鋁片基材熱影響區有明顯差排及不明顯晶粒重生的再結晶現象並於離洞口中心約200微米裂片大小趨近於原始晶粒大小。
本實驗第二部份主要是研究脈衝雷射於水中碎化剛玉粉末效應,以由上往下(top-down)的方式,於水中環境利用不同的雷射模式剝蝕(PLAL)浮動次微米級鋼玉α-Al2O3粉末,並使之碎化(fragmentation),觀察是否有碎裂並分析其結構和相變化的行。結果發現利用雷射模式為Q-switching,能量為400 mJ/pulse時,在電子顯微鏡明場像下可以明顯觀察出會有少部分粉末受雷射剝蝕顆粒尺寸縮少至20nm以下,和原本的尺寸有明顯的有巨大的變化;而當雷射模式改變成free-run,能量為1000 mJ/pulse時,反而沒有明顯縮小尺寸的現象,對兩者雷射模式下做選區繞射,並跟原始氧化鋁圖做比對和X-ray 繞射儀分析可知受兩種雷射模式下剝蝕的粉末和原始粉末相比並無太大的改變,大部分(>95%)仍然是
α-Al2O3與結構。經由高分辨解析後,可知奈秒或毫秒脈衝雷射剝熔蝕水中浮動的鋼玉α-Al2O3與粉末,仍可因熱震效應將其碎裂成粒徑較小的奈米顆粒,並發生α→δ*相變化,
δ*-Al2O3大部分為~20nm,部份顆粒表面有明顯的階檻並對單一顆粒做高分辨電鏡的解析,大部分是δ*相,其形狀接近不規則的形狀,經觀察晶格影像重建圖後,內部結構並沒有發現缺陷的存在但熱震效應及水的冷卻效應仍可造成固定靶材熱震影響區(heat-shock affected zone, HSAZ)之破裂,或浮動次微米顆粒碎化成奈米顆粒。此外,另有幾近球狀之γ-Al2O3雙晶奈米顆粒(15~20nm)誕生,應該是電漿中原分子聚簇成獨立的奈米顆粒,彼此再依照{111}表面貼合成雙晶,屬於主導的熱蒸發機制。
Abstract
Pulsed laser ablation (PLA) in single shot on polycrystalline Al thin foil ca. 50μm in thickness was conducted in air and water to study the heat and shock affected zone (HSAZ) under specific wave length (532 nm), pulse duration time (16 ns) and laser input energy (400, 600 and 800 mJ/pulse) with a specified spot size of 0.03 mm2. The combined optical and electron microscopic observations indicated water is more effective than air to reduce HSAZ which increases with the increase of pulse energy yet with negligible recrystallization of Al substrate. Oxidation of the Al foil and redeposition of aluminum oxide nanocondensates on the laser incident side caused thermal mismatch between the coating and the Al substrate (especially when only 30μm in thickness), and hence intra- and intergranular cracking along thermally etched subgrain boundary and grain boundary, respectively. The minimum interspacing of successive shots for effective fabrication of aluminum oxide nanocondesates from Al substrate are 470 and 250μm, for the present PLA in air and water, respectively.
PLA fragmentation of α-Al2O3 powder (mainly 100 nm in size) in water was also conducted under free-run mode (1064 nm, 240 μs pulse duration) vs Q-switch mode (532 nm, 16 ns pulse duration) having laser spot size 0.03 mm2 and focal point 5 mm beneath the water level for an accumulation time of 20 min at 10 Hz. Comparing with the case of 1064 nm, the 532 nm laser incidence suffered less water absorption and was more effective to produce nanocondensates mainly in the form of γ and δ* derived phases ranging from 5 to 20 nm in diameter which were occasionally (111)-specifically coalesced as twinned bicrystals.
目次 Table of Contents

誌謝……………………………………………………………………………………i
摘要…………………………………………………………………………………ii
Abstract…………………………………………………………………………iv
Part I…………………………………………………………………1
一、 前言………………………………………………………………………2
二、 實驗步驟與方法…………………………………………………………5
2.1 原始金屬鋁靶材......................................................................................................5
2.1.1 準備靶材...............................................................................................................5
2.1.2 X-ray 繞射分析(XRD)......................................................................................5
2.1.3 穿透式電子顯微鏡(TEM)觀察...........................................................................5
2.1.4 掃瞄式電子顯微鏡(SEM)觀察...........................................................................5
2.2 雷射剝蝕後之鋁靶材.............................................................................................5
2.2.1 雷射剝蝕..............................................................................................................6
2.2.2 偏光顯微鏡觀察.................................................................................................5
2.2.3 掃瞄式電子顯微鏡觀察.....................................................................................6
2.2.4 穿透式電子顯微鏡觀察.....................................................................................6
三、 實驗結果..............................................................................................................8
3.1 第一部份:原始金屬鋁靶材................................................................................8
3.1.1 X-ray 繞射分析...................................................................................................8
3.1.2 掃瞄式電子顯微鏡觀察.....................................................................................8
3.1.3 穿透式電子顯微鏡觀察.....................................................................................8
3.2 第二部份:雷射剝蝕後之鋁靶材........................................................................8
3.2.1 掃瞄式電子顯微鏡觀察偏光顯微鏡觀察..........................................................8
3.2.2 偏光顯微鏡觀察..................................................................................................9
3.2.3 穿透式電子顯微鏡觀察.....................................................................................9
四、討論………………………………………………………………………11
4.1 單一脈衝雷射與環境條件對鋁薄片剝熔蝕孔洞大小與形狀的影響...............11
4.2 單一脈衝雷射與環境條件對鋁薄片造成的熱震效應.......................................12
4.3 單一脈衝雷射剝熔蝕鋁薄片造成氧化鋁回鍍的機制.......................................13
4.4 單一脈衝雷射與環境條件對鋁薄片造成的開裂...............................................13
五、結論………………………………………………………………………15
六、 參考文獻.............................................................................................................20
附錄…………………………………………………………………………………16
Part II…………...................................................................................................45
一、前言......................................................................................................................46
二、實驗步驟與方法..................................................................................................48
2.1 配置氧化鋁粉末..................................................................................................48
2.2 X-ray 繞射分析(XRD).........................................................................................48
2.3 雷射剝蝕..............................................................................................................48
2.4 掃瞄式電子顯微鏡觀察......................................................................................48
2.5 穿透式電子顯微鏡觀察 .....................................................................................48
三、實驗結果...............................................................................................................50
3.1 X-ray 繞射分析(XRD).........................................................................................50
3.2 掃瞄式電子顯微鏡觀察......................................................................................50
3.3 穿透式電子顯微鏡觀察......................................................................................50
四、討論.......................................................................................................................52
4.1 鋼玉浮動粉末與靜止多晶塊材之水中奈秒脈衝碎化效應比較.......................52
4.2 鋼玉粉末水中粒徑小化極限與相變化...............................................................52
4.3 奈秒脈衝雷射使水中鋼玉粉末粒徑變小的機制...............................................53
五、結論.......................................................................................................................54
六、文獻回顧...............................................................................................................60
附錄…………………………………………………………………………………55
參考文獻 References
Part I
[1] Silfvast W.T., Laser Fundamentals, the Press Syndicate of the University of
Cambridge, New York (1996) pp.1-6.
[2] 陳裕尹, Nd:YAG Laser 光電子學報告 (1996) pp.2-7.
[3] 林三寶, 雷射原理與應用, 全華科技圖書出版 (1987), pp.50-70, pp.88-90,
p.178.
[4] Zhu X., Naumov A.Y., Villeneuve D.M., Corkum P.B., Influence of laser
parameters and material properties on micro drilling with femtosecond laser
pulses, App. Phys. A69 (1999) S367-S371.
[5] Chicbkov B.N., Momma C., Nolte S., Alvensleben F., Tiinnermann A.,
Femtosecond, picosecond and nanosecond laser ablation of solids, App. Phys.
A63 (1999) 109-115.
[6] Le Harzic R., Huot N., Audouard E., Jonin C., Laporte P., Valette S.,
Fraczkiewicz A., Fortunier R., Comparison of heat affected zones due to
nanosecond to femtosecond laser pulses using transmission electronic properties,
Appl. Phys. Lett. 80 (2002) 3886-3888.
[7] Patil P.P., Phase D.M., Kulkarni S.A., Ghaisas S.V., Kulkarin S.K., Kanekter
S.M., Ogale S.B., Bhide V.G., Pulsed-laser induced reactive quenching at a
liquid-solid interface: aqueous oxidation of iron, Phys. Rev. Lett. 58 (1987)
238-241.
[8] Yang G.W., Laser ablation in liquids: applications in the synthesis of
nanocrystals, Prog. Mater. Sci., 52 (2007) 648-698.
[9] Zhu S., Lu Y. F., Hong M.H., Chen X.Y., Laser ablation of solid substrates in
water and ambient air, J. Appl. Phys., 89 (2001) 2400-2403.
[10] Bärsch N., Gatti A., Sattari R., Barcikowski S, Improving laser ablation of
zirconia by liquid films: multiple influences of liquids on surface machining and
nanoparticle generation, Journal of Laser Micro/Nanoengineering, 4 (2009)
66-70.
[11] 黃俊傑, 鈦於水中之雷射剝蝕氧化凝聚 (國立中山大學九十七學年度碩士
論文).
[12] 劉宜隴, 真空、大氣、水溶液(含/不含氫氧化鈉)環境下雷射剝蝕合成奈米氧
化鋁凝聚物之粗化/聚簇與相變化行為 (國立中山大學九十九學年度碩士論
文).
[13] 潘建男, 東大石與氧化鋁凝聚物之合成與相變化 (國立中山大學九十五學
年度博士論文).
[14] Levin I., Brandon D., Metastable alumina polymorphs: crystal structures and
transition sequences, J. Am. Ceram. Soc. 81 (1998) 1995–2012.
[15] Sajti C.L., Sattari R., Chichkov B.N., Barcikowski, S. Gram scale synthesis of
pure ceramic nanoparticles by laser ablation in liquid, J. Phys. Chem. C 114
(2010) 2421–2427.
[16] Lin N.H., Chang C.P., Kao P.W., The effect of annealing temperature on the
recrystallization kinetics of commercially pure aluminum, Metall. Mater. Trans.
A 26 (1995) 2185-2187
[17] Chrisey D.B., Hubler G.K., Pulsed laser deposition of thin films (Wiley, New
York, 1994), p. 613.
[18] Zhigilei L.V., Garrison B.J., Microscopic mechanisms of laser ablation of
organic solids in the thermal and stress confinement irradiation regimes, J. Appl.
Phys., 88 (2000) 1281-1298.
[19] Zhigilei L.V., Leveugle E., Garrison B.J., Yingling Y.G., Zeifman M.I.,
Computer simulations of laser ablation of molecular substrates, Chem. Rev., 103
(2003) 321-347.
[20] Chichkov B.N., Momma C., Nolte S., Von Alvensleben F., Tünnerman A.,
Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A,
63 (1996) 109-115.
[21] von Allmen M., Blatter A., Laser-beam interactions with materials, Springer,
Berlin (1994), p. 194.
[22] Ruch de Berruezo, M.C., Espejo H., Palacios T. Laser damage on pure Zr.
Metallography 10 (1977) 425-431.
[23] Ershova L.S., Mechanism of recrystallization during laser treatment, Metal
Science and Heat Treatment, 21 (1979) 183-185.
[24] Dahotre N.B., Harimkar S.P., Laser Fabrication and Machining of Materials,
Springer, 2008
[25] 易善穠,中華古文物藝術探微─兼論以科學方法鑑偽, 台灣黎明文化事業公
司出版, 2005
[26] Meyers M.A., Chawla, K.K., Mechanical Behavior of Materials, Prentice-Hall,
Inc International Edition 1999, p344-353.
[27] http://www.engineeringtoolbox.com, Engineering Toolbox, 2005.
[28] 林浚泉,再生鋁冶煉技術,工研院,1980.
[29] Sannino, A.P., Rack, H.J., Dry sliding wear of discontinuously reinforced
aluminum composites : review and discussion , Wear, 189,1995, pp.1-19.
[30] 劉文海/金屬中心, 2006非鐵金屬年鑑-鋁合金, 經濟部技術部產業技術知識
服務(ITIS)計畫, 2006
[31] Timmermans, G., Froyen, L., Fretting wear behaviour of hypereutectic P/M
Al-Si in oil environment, Wear, 230 (1999) 105-117.
[32] Filip, O., El-Aziz, A.M., Hermann, R., Mummert, K., Schultz, L., Effect of Al additives and annealing time on microstructure and corrosion resistance of
Nd–Fe–B alloys , Materials Letters, 51 (2001) 213–218.
[33] 林敬二、楊美惠、楊寶旺、廖德章、薛敬和,英〃中〃日化學大辭典,高
立圖書有限公司,台北,2000,pp. 70、380、927、1364.
[34] Hong Y.J. Research on the micro friction of the nano aluminium
oxide/polymethyl methacrylate composite,National Yunlin University, Taiwan,
Republic of China, June, 2008, pp.6-7.
[35] Vogel A., Noack J., Nahen K., Theisen D., Busch S., Parlitz U., Hammer D.X.,
Noojin G.D., Rockwell B.A., and Birngruber R., Energy balance of optical
breakdown in water at nanosecond to femtosecond time scales, Appl. Phys. B68,
(1999) 271-280.
[36] Noack J., Hammer D.X., Noojin G.D., Rockwell B., Vogel A., Influence of
pulse duration on mechanical effects after laser-induced breakdown in water, J.
Appl. Phys. 83, (1998) 7488-7496.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------

Part II
[1] Chrisey D.B. and Hubler, G.K., Pulsed laser deposition of thin films, (Wiley,
NewYork, 1994), p. 613.
[2] Yang, G.W. Laser ablation in liquids: Applications in the synthesis of nanocrystals,
Prog. Mater. Sci., 52 (2007) 648-698.
[3] Bini, R. Laser-assisted high-pressure chemical reactions, Acc. Chem., 37(2004)
95-101
[4] Saito, K., Takatai, K., Sakka, T. and Ogata, Y., Observation of the light emitting
region produced by pulsed laser irradiation to a solid–liquid interface, Appl. Surf.
Sci., 197-198 (2002) 56-60.
[5] Patil, P. P., Phase, D.M., Kulkarni, S. A., Ghaisas, S.V., Kulkarni, S.K., Kanetkar,
S.M. and Ogale, S.B. Pulsed-laser–induced reactive quenching at liquid-solid
interface: Aqueous oxidation of iron, Phys. Rev. Lett., 58 (1987) 238-241.
[6] Ogale, S.B., Patil, P. P., Phase, D.M., Bhandarkar, Y.V., Kulkarni, S.K., Kulkarni, S.,
Ghaisas, S. V. and Kanetkar, S.M., Synthesis of metastable phases via
pulsed-laser-induced reactive quenching at liquid-solid interfaces, Phys. Rev. B, 36
(1987) 8237-8250.
[7] Ogale, S.B., Malshe, A. P., Kanetkar, S.M. and Kashirsagar, S.T., Formation of
diamond particulates by pulsed ruby laser irradiation of graphite immersed in
benzene, Solid State Comm., 84 (1992) 371-373.
[8] Fabbro, R., Fournier, J., Ballard, P., Devaux, D. and Virmont, J., Physical study of
laser-produced plasma in confined geometry, J. Appl. Phys., 68 (1990) 775-784.
[9] Yavas, O., Lenderer, P., Park, H.K., Grigoropoulos, C.P., Poun S.C. and Tam, A.C.,
Enhanced acoustic cavitation following laser-induced bubble formation: long-term
memory effect, Phys. Rev. Lett., 72 (1994) 2021-2024.
[10] Sakka, T., Lwanage, S., Ogata, Y.H., Matsu, A. and Takemoto, T., Laser ablation at
solid–liquid interfaces: An approach from optical emission spectra, J. Chem. Phys.,
112 (2000) 8645-8653.
[11] Yang, G.W., Wang J.B. and Liu, Q.X., Preparation of nano-crystalline diamonds
using pulsed laser induced reactive quenching, J. Phys.-Condens Matter., 10 (1998)
7923-7927.
[12] Zhigilei L. V., Leveugle E., Garrison B. J., Yingling Y. G. and Zeifman M. I.,
Computer simulations of laser ablation of molecular substrates Chem. Rev., 103
(2003) 321-347.
[13] Seto T., Shimada M. and Okuyama K., Evaluation of sintering of nanometer-sized
titania using aerosol method, Aerosol Sci. Technol., 23 (1995) 183-200.
[14] Zeng H., Cai W., Li Y., Hu J. and Liu P., Composition/Structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media, J.
Phys. Chem. B, 109 (2005) 18260-18266.
[15] Liang C., Shimizu Y., Sasaki T. and Koshigaki N., Synthesis of ultrafine SnO 2-x
nanocrystals by pulsed laser-induced reactive quenching in liquid medium, J. Phys.
Chem. B, 107 (2003) 9220-9225.
[16] Wang J. B., G. Yang W., Zhang C. Y., Zhong X. L. and Ren Z. A., Cubic-BN
nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction,
Chem. Phys. Lett., 367 (2003) 10-14.
[17] Zhu S., Lu Y. F., . Hong M. H and Chen X. Y., Laser ablation of solid substrates in
water and ambient air, J. Appl. Phys., 89 (2001) 2400-2403.
[18] Berthe L., Fabbro R., Peyer P., Tollier L. and Bartnicki E., Generation of shock
waves by laser-induced plasma in confined geometry, J. Appl. Phys., 74 (1997)
2268-2273.
[19] Sajti C.L., Sattari R., Chichkov B.N., Barcikowski, S. Gram scale synthesis of
pure ceramic nanoparticles by laser ablation in liquid, J. Phys. Chem. C 114
(2010) 2421–2427.
[20] Levin I., Brandon D., Metastable alumina polymorphs: crystal structures and
transition sequences, J. Am. Ceram. Soc. 81 (1998) 1995–2012.
[21] McHale, J. M. and Navrotsky, A., Effect of increased surface area and
chemisorbed H2O on the relative stability of nanocrystalline α-Al2O3 and
γ-Al2O3 . J. Phys. Chem. B, 101 (1997a) 603–613.
[22] McHale J.M., Auroux A., Perrotta A.J., Navrotsky A., Surface energies and
thermodynamic phase stability in nanocrystalline aluminas. Science, 277 (1997b)
788–791.
[23] Pan C., Chen S.Y., Shen P. Laser ablation condensation, coalescence and phase
change of dense γ-Al2O3 particles, J. Phy. Chem. B 110 (2006) 24340-24345.
[24] Wang G.W., Laser ablation in liquids: Applications in the synthesis of
nanocrystals, Prog. Mater. Sci., 52 (2007) 648–698.
[25] Barcikowski S.; Devasa F.; Moldenhauer K., Impact and structure of literature
on nanoparticle generation by laser ablation in liquids, J. Nanopart. Res., 11
(2009) 1883–1893.
[26] Amendola V.; Meneghetti M. Laser ablation synthesis in solution and size
manipulation of noble metal nanoparticles, Phys. Chem. Chem. Phys., 11 (2009)
3805–3821.
[27] Sakamoto S.; Fujutsuka M.; Majima T., Light as a construction tool of metal
nanoparticles: synthesis and mechanism, J. Photochem. Photobiol. C: Rev., 10
(2009) 33–56.
[28] Semaltianos N.G., Nanoparticles by laser ablation, Crit. Rev. Solid State Mater. Sci., 35 (2010) 105–124.
[29] Kamat P.V.; Fluminani M.; Hartland G.V., Picosecond dynamics of silver
nanoclusters: photoejection of electrons and fragmentation, J. Phys. Chem. B, 102
(1998) 3123–3128.
[30] Yamada K.; Tokumoto Y.; Nagata T.; Mafune F., Mechanism of laser-induced
size reduction of gold nanoparticles as studied by nanosecond transient absorption
spectroscopy, J. Phys. Chem. B, 110 (2006) 11751–11756.
[31] Yamada K.; Miyajima K.; Mafune F., Thermionic emission of electrons from
gold nanoparticles by nanosecond pulse-laser excitation of interband, J. Phys.
Chem. C, 111 (2007) 11246–11251.
[32] Shoji M.; Miyajima K.; Mafune F., Effect of single femtosecond pulses on gold
nanoparticles, J. Phys. Chem. C, 112 (2008) 1929–1932.
[33] Muto H.; Miyajima K.; Mafune F., Mechanism of laser-induced size reduction
of gold nanoparticles as studied by single and double laser pulse excitation, J.
Phys. Chem. C, 112 (2008) 5810–5815.
[34] Takami A.; Kurita H.; Koda S., Laser-induced size reduction of noble metal
particles, J. Phys. Chem. B, 103 (1999) 1226–1232.
[35] Werner D., Hashimoto S., Improved working model for interpreting the
excitation wavelength- and fluence-dependent response in pulsed laser-induced
size reduction of aqueous gold nanoparticles, J. Phys. Chem. C 115 (2011)
5063-5072.
[36] Wang G.W., Laser ablation in liquids: Applications in the synthesis of
nanocrystals, Prog. Mater. Sci., 52 (2007) 648–698.
[37] Barcikowski S., Devasa F.; Moldenhauer K. Impact and structure of literature
on nanoparticle generation by laser ablation in liquids, J. Nanopart. Res., 11
(2009) 1883–1893.
[38] Amendola V., Meneghetti M. Laser ablation synthesis in solution and size
manipulation of noble metal nanoparticles, Phys. Chem. Chem. Phys., 11 (2009)
3805–3821.
[39] Sakamoto S., Fujutsuka M., Majima T. Light as a construction tool of metal
nanoparticles: synthesis and mechanism, J. Photochem. Photobiol. C: Rev., 10
(2009) 33–56.
[40] Semaltianos N.G. Nanoparticles by laser ablation, Crit. Rev. Solid State Mater.
Sci., 35 (2010) 105–124.
[41] Kamat P.V., Fluminani M., Hartland G.V., Picosecond dynamics of silver
nanoclusters: photoejection of electrons and fragmentation, J. Phys. Chem. B,
102 (1998) 3123–3128.
[42] Werner D., Hashimoto S., Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced
size reduction of aqueous gold nanoparticles, J. Phys. Chem. C 115 (2011)
5063-5072.
[43] Takami A., Kurita H., Koda S., Laser-induced size reduction of noble metal
particles, J. Phys. Chem. B, 103 (1999) 1226–1232.
[44] Meunier M., Boulais E., Lachaine R., Baumgart J., Femtosecond laser interaction
with plasmonic nanostructures in liquids: Modelling and application to biology,
Kenote lecture in the conference “Laser ablation and nanoparticle generation in
liquids” 2010, 29 June – 1 July 2010, RAMADA Hotel Regina Titlis, Engelberg,
Switzerland.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.183.150
論文開放下載的時間是 校外不公開

Your IP address is 18.117.183.150
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code