Responsive image
博碩士論文 etd-0703115-163814 詳細資訊
Title page for etd-0703115-163814
論文名稱
Title
具可調光子能隙與光致發光性質之PS-P2VP嵌段共聚物/芘衍生物之相容自組裝體
Compatible Assemblies of PS-P2VP/Pyrene Derivatives with Tunable Bandgaps and Photoluminescent Emissions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-08-04
關鍵字
Keywords
嵌段共聚物、芘、光致發光、氫鍵作用力、光子能隙
block copolymer, pyrene, photoluminescence, H-bonding, photonic bandgap, lasing application
統計
Statistics
本論文已被瀏覽 5705 次,被下載 35
The thesis/dissertation has been browsed 5705 times, has been downloaded 35 times.
中文摘要
在本論文中,透過較低分子量的兩性嵌段共聚物PS-P2VP (Mn = 200K) 混摻帶有各種官能基的芘衍生物,包括1-aminopyrene (Py-NH2)、1-methanolpyrene (Py-CH2OH)和1-pyrenecarboxylic acid (Py-COOH),並利用塗步旋轉製備混摻薄膜,探討在混摻薄膜狀態下經由氫鍵作用形成的微相分離結構,例如層板、雙連續相和球體,透過傅立葉變換紅外光譜(FTIR)來佐證P2VP的吡啶和芘衍生物的具體官能團之間的分子間的相互作用於混摻薄膜下。混摻統下,吡啶在吸收度位於991cm-1 和 1597 cm-1 皆會轉移到高波數,這表示氫鍵作用力於芘衍生物的官能基與P2VP上的吡啶發生,經由穿透式電子顯微鏡(TEM)觀察側面結構,則隨著混摻含量增加,由層狀結構轉變為雙連續相,在混摻含量最大時結構為球狀。因芘的光致發光特質,在給予特並激發光後,由光致發光圖譜表示隨著混摻含量增加,monomeric放光會減弱而excimer放光增強。而在Py-CH2OH和Py-COOH的各混摻薄膜系統下,隨著添入量增加,可觀察到結構由整齊的層板狀轉變至不規則的網狀結構。由光致發光觀察,在混摻含量較低時,兩者皆表現出monomeric放光和excimer放光共存的情況,值得注意的事,excimer放光由靜態excimer放光和動態excimer放光一起貢獻。此外,隨著添入的含量提高,光致發光的結果在Py-CH2OH系統下表現出靜態excimer放光的逐漸減弱而動態excimer放光逐漸增強;相反地,而在Py-COOH系統下則顯示靜態excimer和而動態excimer放光同時增加的現象。透過1,1,2-trichloroethane (TCE) 短時間地溶劑退火,結構上會得到排列更整齊的層狀和整齊的雙連續相結構,對於光致發光也會有增強的效果。
調控光子能隙(PBGs)則選擇較高分子量的PS-P2VP (Mn = 400K) 並添入Py-CH2OH,在低含量混摻下,推測形態上維持於雙連續相結構,透過滴入甲醇和乙醇,在澎脹與消溶過程後,使混摻薄膜的PBGs達到並維持在可見光的波段。因為PBGs的波段幾乎與受激發後的excimer發光波段重疊,故推測在低含量混摻薄膜可透過醇類的套牢達到布拉個共振腔的效果並作為激光雷射和全反射材料的應用。
Abstract
In this study, photonic reflectors with tunable photoluminescence (PL) emissions and photonic bandgaps are investigated in compatible assembles of the amphiphilic polystyrene-block-poly(2-vinylpyridine) (PS-P2VP) blended with various pyrene derivatives including 1-aminopyrene (Py-NH2), 1-methanolpyrene (Py-CH2OH) and 1-pyrenecarboxylic acid (Py-COOH). Various microphase-separated morphologies can be found in the as-spun PS-P2VP/pyrene derivative hybrid thin films with different quantities of the included pyrene derivatives denoted by γ value which is a molar ratio of the pyrene derivative to P2VP unit. The intermolecular interactions between the pyridines of P2VP and the specific functional groups of pyrene derivatives are investigated by Fourier transform infrared spectroscopy (FTIR). In PS-P2VP/Py-NH2, the absorbance of pyridine peaks at 991cm-1 and 1597 cm-1 shifts to high wavenumber, suggesting the H-bonding interaction. With the increase of the γ value, phase transitions from the intrinsic lamellar to bicontinuous and finally to spherical microstructures are found in PS-P2VP/Py-NH2 hybrid thin films. Meanwhile, the PL spectra show that the decreased monomeric emission and enhanced excimer emission. In contrast, the translation from the parallel lamellae to network morphologies is found in both PS-P2VP/Py-CH2OH and PS-P2VP/Py-COOH hybrid thin films as the γ value increases. As γ value is low, PL emissions of both PS-P2VP/Py-CH2OH and PS-P2VP/Py-COOH hybrids exhibit the coexistence of monomeric and excimer emissions. Notably, the excimer emission is composed of static and dynamic emissions. As γ value is high, the monomeric emission disappears and only excimer emission can be obtained. Moreover, the PL emission in the PS102-P2VP97/Py-CH2OH hybrids exhibit the rival for the static and dynamic excimer emissions varied with the γ value. In contrast, the PS-P2VP/Py-COOH hybrid thin films display that both static and dynamic excimer emissions grow up coincidently. After 1,1,2-trichloroethane (TCE) annealing, well-aligned parallel lamellae and order gyroid microstructures can be accomplished. The PL behavior, however, is almost similar to that without solvent annealing. Finally, we conduct the swelling and deswelling process by alcohols to successfully trap the photonic bandgaps (PBGs) in visible wavelength. After trapping the PBGs by methanol and ethanol, the almost identical band position for both PL excimer emission and PBG can be carried out in the PS-P2VP/Py-CH2OH with γ = 1/20, indicating the formation of the Bragg reflector capable of lasing applications.
目次 Table of Contents
論文審定書i
誌謝 ii
摘要 iii
Abstract v
Table of Contents vii
List of Tables xi
List of Figures xii
Chapter 1. Introduction 1
1.1 Self-Assembly 1
1.2 Block Copolymer (BCP) Self-Assembly 3
1.3 Principle of Photoluminescence 6
1.3.1 Principle of Photoluminescence 6
1.3.2 Excimer versus Aggregation 8
1.4 Association of small molecules with Polymers 13
1.4.1 The small molecules/PVP 13
1.4.2 The BCP coordinated with supramolecule 15
1.4.3 Fabrication of the Hybrid Nanostructure 17
1.5 Photonic Crystals 20
1.5.1 Fabrication of Photonic Crystals from BCP Self-Assembly 22
1.6 Controlled Orientation of BCP Microphase Separation 26
1.6.1 Solvent-Annealing Induced Orientation 26
1.6.2 Thermal-Annealing-Induced Orientation 27
1.7 Block-Copolymer-Distributed Bragg Reflectors 29
Chapter 2 Objectives 32
Chapter 3 Materials and Experimental Methods 34
3.1 Materials 34
3.2 Sample Preparation 34
3.2.1 Bulks Samples Preparation 34
3.2.2 Thin Film Samples Preparation 35
3.3 Microstructural Characterization 35
3.3.1 Transmission Electron Microscopy (TEM) 35
3.3.2 Ultraviolet-Visible Absorption Spectrometer (UV-Vis) 36
3.3.3 Photoluminescence Spectrometer (PL) 36
3.3.4 Ultra-small Angle X-ray Scattering (USAXS) 36
3.3.5 Fourier Transform Infrared Spectroscopy (FT-IR) 37
Chapter 4 Results and Discussion 38
4.1. Microphase Separation of PS102-P2VP97 BCP 38
4.1.1. Self-Assembled Morphologies of PS102-P2VP97 BCP in Bulk 38
4.1.2. Self-Assembled Morphologies of PS102-P2VP97 BCP in Thin Film 39
4.2. Compatible Assemblies of PS102-P2VP97/Fluorophore Hybrids 41
4.2.1. Supramolecular Assemblies of PS102-P2VP97/Pyrene Derivatives 41
4.3. Supramolecular Assemblies of PS102-P2VP97/Pyrene Derivatives in Thin Film 43
4.3.1. Self-Assembled Morphologies of PS102-P2VP97/Py-NH2 Hybrid Thin Films 43
4.3.2. Morphologies of PS102-P2VP97/Py-NH2 Hybrids in Thin Film 46
4.3.3. Self-Assembled Morphologies of PS102-P2VP97/Py-CH2OH Hybrid Thin Films49
4.3.4. Morphologies of PS102-P2VP97/Py-CH2OH Hybrids in Thin Film 51
4.3.5. Ordered Morphologies of PS102-P2VP97/Py-CH2OH Hybrids in Thin Film after Solvent Annealing 54
4.3.6. Self-Assembled Morphologies of PS102-P2VP97/Py-COOH Hybrid Thin Films.57
4.3.7. Morphologies of PS102-P2VP97/ Py-CH2OH Hybrids in Thin Film 60
4.3.8. Ordered Morphologies of PS102-P2VP97/Py-COOH Hybrids in Thin Film
after Solvent Annealing 62
4.4 Optical Properties of PS102-P2VP97/Pyrene Derivatives Hybrids in Thin Film .66
4.4.1. Photoluminescence of PS102-P2VP97/Py-NH2 Hybrids in Thin Film 66
4.4.2. Photoluminescence of PS102-P2VP97/Py- CH2OH Hybrids in Thin Film 67
4.4.3. Photoluminescence of PS102-P2VP97/Py-CH2OH Hybrid Thin Films after Solvent Annealing 70
4.4.4. Photoluminescence of PS102-P2VP97/Py-COOH Hybrids in Thin Film 71
4.4.5. Photoluminescence of PS102-P2VP97/Py-COOH Hybrid Thin Films after Solvent Annealing 73
4.5 Fabrication of Bragg Reflectors for Lasing 74
4.5.1. Microphase Separation of PS248-P2VP195 BCP .74
4.5.2. Trapped Photonic Bandgaps in PS248-P2VP195 Thin Films 76
4.5.3. Tunable Bandgaps of PS248-P2VP195/Pyrene Deriatives Photonic Thin
Films 77
Chapter 5 Conclusion 80
Chapter 6 References 82
參考文獻 References
Chapter 6 References

1. Lehn, J.-M. Supramolecular Chemistry: Receptors, Catalysts, and Carriers Science 1985, 227, 849-856.
2. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular Self-Assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures Science 1991, 254, 1312-1319.
3. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; 1995.(b) Lawrence, DS; Jiang, T.; Levett, M. Chem. Rev 95 1995: 2229-2260.
4. Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales Science 2002, 295, 2418-2421
5. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. Self-Assembly of 10-μm-Sized Objects into Ordered Three-Dimensional Arrays J. Am. Chem. Soc. 2001, 123, 7677-7682.
6. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Spatiotemporal Concentration Patterns in A Surface Reaction: Propagating and Standing Waves, Rotating Spirals, and Turbulence Phys. Rev. Lett. 1990, 65, 3013-3016.
7. Whitesides, G. M.; Ismagilov, R. F. Complexity in Chemistry Science 1999, 284, 89-92.
8. Bates, F. S.; Fredrickson, G. H. Block copolymers--Designer Soft Materials Phys. Today 1999, 52, 32-38.
9. Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self-Assembled Block Copolymer Patterns Polymer 2003, 44, 6725-6760.
10. Muthukumar, M.; Ober C. K.; Thomas E. L. Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials Science 1997, 277, 1225-1232.
11. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic Area-Minimizing Surfaces in Block Copolymers Nature 1988, 334, 598-601.
12. Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers Macromolecules 1996, 29, 7641-7644.
13. Lee, J. H.; Koh, C. Y.; Singer, J. P.; Jeon, S. J.; Maldovan, M.; Stein, O.; Thomas, E. L. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons Adv. Mater. 2014, 26, 532-569.
14. Gratzel, M. , Thomas, E. L Modern Fluorescence Spectroscopy, Vol. 2, E. L. Wehry, Ed., Plenum Press, New York, N.Y., 1976, 169.
15. Birks, J. B. Excimers Rep. ROP in Phys. 1975, 38, 903-974.
16. Birks, J. B.; Christophorou, L. G. Excimer Fluorescence Spectra of Pyrene Derivatives. Spectrochim. Acta. 1963, 19, 401-410.
17. Birks, J. B.; Lumb, M. D.; Munro, I. H. Excimer Fluorescence. V. Influence of Solvent Viscosity and Temperature. 1964. 289-297.
18. Wilhelm, M.; Zhao, C. L.; Wang, Y.; Xu, R.; Winnik, Poly(styrene-ethylene oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study. Macromolecules 1991, 24, 1033-1044.
19. Jhaveri, S. B., Beinhoff, M., Hawker, C. J., Carter, K. R., & Sogah, D. Y.. Chain-End Functionalized Nanopatterned Polymer Brushes Grown via in Situ Nitroxide Free Radical Exchange. ACS nano, 2008, 2: 719-727.
20. Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2008, 47,573- 575.
21. Birks, J. B. Photophysics of Aromatic Molecules Wiley, Wiley-Interscience, London, 1970, 301–371
22. Scheibe, G. Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache Angew. Chem. 1937, 50, 212-219.
23. Scheibe, G.; Kandler, L.; Ecker, H. Polymerisation und Polymere Adsorption Als Ursache Neuartiger Absorptionsbanden von Organischen Farbstoffen. Naturwissenschaften, 1937, 25: 75-75.
24. Scheibe, G. Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache. Angew. Chem. 1937, 50, 212.-219
25. Scheibe, G. Angew. Chem. 1936, 49, 563.
26. Jelley, E. E. Spectral Absorption and Fluorescence of Dyes in the Molecular State Nature 1936, 138, 1009-1010.
27. Jelley, E. E. Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride. Nature. 1937, 139, 631.
28. Sheppard, S. E. On the Influence of Their State in Solution on the Absorption Spectra of Dissolved Dyes. Proc. R. Soc. London Ser. A 1909, 82, 256-270.
29. Sheppard, S. E. The Effects of Environment and Aggregation on the Absorption Spectra of Dyes..Rev. Mod. Phys. 1942, 14, 303-304.
30. Scheibe, G. Reversible Polymerisation als Ursache Neuartiger Absorptionsbanden von Farbstoffen. Kolloid-Z. 1938, 82, 1-14.
31. Kopainsky, B.; Hallermeier, J. K.; Kaiser, W. The First Step of Aggregation of PIC: the Dimerization. Chem. Phys. Lett. 1981, 83, 498-502.
32. Herz, A. H. Aggregation of Sensitizing Dyes in Solution and Their Adsorption onto Silver Halides. Adv. Colloid Interface Sci. 1977, 8, 237-290.
33. Mӧbius, D. Scheibe Aggregates. Adv. Mater. 1995, 7, 437-444.
34. Egorov, V. V. Nature of the Optical Transition in Polymethine Dyes and J-Aggregates. J. Chem. Phys. 2002, 116, 3090-3103.
35. Knoester, J.; Daehne, S. J-Aggregates of Amphiphilic Cyanine Dyes: Self-Organization of Artificial Light Harvesting Complexes Int. J. Photoenergy 2006, 5, 4-25.
36. Macmillian, The Theory of Photographic Process (Ed.: T. J. James), 1977.
37. Kuhn, H.; Mӧbius, D. Rossiter, B. W.; Baetzold R. C. Eds., John Wiley Sons. Investigations of Surface and Interfaces , 1993; Vol. IXB, 375-542.
38. Kuhn, H.; Mӧbius, D. Rossiter, B. W.; Baetzold R. C. Eds., John Wiley Sons. Investigations of Surface and Interfaces , 1993; Vol. IXB, 375-542.
39. McRae, E. G.; Kasha, M. J. Enhancement of Phosphorescence Ability upon Aggregation of Dye Molecules. Chem. Phys. 1958, 28, 721-722.
40. Kasha, M.; Rawls, R.; El-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. Pure Appl. Chem. 1965, 11, 371.
41. Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J.J.; Paul Alivisatos, A.; Xu, T. Small-Molecule-Directed Nanoparticle Assembly towards Stimuli-Responsive Nanocomposites. Nat. Mater. 2009, 8, 979-985.
42. Ruokolainen, J.; Ma¨kinen, R.; Torkkeli, M.; Ma¨kela¨, T.; Serimaa, R.; ten Birke, G.; Ikkala, O. Switching Supramolecular Polymeric Materials with Multiple Length Scales. Science. 1998, 280, 557-560.
43. Kuila, B. K.; Chakraborty, C.; Malik, S. A Synergistic Coassembly of Block Copolymer and Fluorescent Probe in Thin Film for Fine-Tuning the Block Copolymer Morphology and Luminescence Property of the Probe Molecules. Macromolecules. 2012, 46, 484-492.
44. Kertesz, K.; Balint, Z.; Vertesy, Z.; Mark, G. I.; Lousse, V.; Vigneron, J. P.; Rassart, M.; Biro, L. P. Gleaming and Dull Surface Textures From Photonic-Crystal-Type Nanostructures in the Butterfly Cyanophrys Remus. Phys. Rev. E. 2006, 74, 021922
45. Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical review letters. Phys. Rev. Lett. 1987, 58, 2059.
46. John, S. Phys. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Rev. Lett. 1987, 58, 2486.
47. Vlasov, Y. A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 2005, 438, 65-69.
48. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Metal–insulator–semiconductor optoelectronic fibres. Nature 2004, 431, 826-829.
49. Knight, J. C.; Birks, T. A.; Russell, P. S.; Atkin, D. M.; All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1991, 21, 1547-1549.
50. Krauss, T. F.; RICHARD, M.; Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 1996, 383, 699-702.
51. Busch, K.; John, S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett. 1999, 83, 967.
52. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 2001, 13, 1069-1072.
53. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Photonic Crystal Composites with Reversible High‐Frequency Stop Band Shifts. Adv. Mater. 2003, 15, 685-689.
54. Lee, Y. J.; Braun, P. V. Tunable inverse opal hydrogel pH sensors. Adv. Mater. 2003, 15, 563-566.
55. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal. Appl. Phys. Lett. 2003, 82, 3593-3595.
56. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nat. Mater. 2004, 3, 872-876.
57. Lawrence, J. R.; Shim, G. H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays. Adv. Mater. 2005, 17, 2344-2349.
58. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 2006, 5, 179-184.
59. Takeoka, Y. J. Angle-independent structural coloured amorphous arrays. Mater. Chem. 2012,22, 23299-23309.
60. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334, 598-601.
61. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. A three-dimensional optical photonic crystal with designed point defects. Nature 2004, 429, 538-542.
62. Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 2000, 12, 812-814.
63. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. Two-dimensional block copolymer photonic crystals. Polymer 2003, 44, 6549-6553.
64. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 2002, 14, 1850-1853.
65. Kim, G.; Libera, M. Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films. Macromolecules 1998, 31, 2569-2577.
66. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment. Macromolecules, 2000, 33, 947-953.
67. Keller, A.; Pedemonte, E.; Willmouth, F. M. Macro lattice from segregated amorphous phases of a three block copolymer. Nature 1970, 225, 538.
68. Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
69. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Local control of microdomain orientation in diblock copolymer thin films with electric fields.Science. 1996, 273, 931.
70. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126-2129.
71. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 1997, 275, 1458-1460.
72. Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nanodomain control in copolymer thin films. Nature 1998, 395, 757-758.
73. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition. Macromolecules 1999,32, 952-954.
74. Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 1999, 82, 2602.
75. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003, 424, 411-414.
76. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 2001, 13, 1152-1155.
77. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Fabrication of Nanostructures with Long-range Order Using Block Copolymer Lithography Appl. Phys. Lett. 2002, 81, 3657-3659.
78. Martin, T. M.; Young, D. M. Correlation of the Glass Transition Temperature of Plasticized PVC Using a Lattice Fluid Model Polymer 2003, 44, 4747-4754.
79. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 2004, 16, 226-231.
80. Harrison, C.; Adamson, D. H.; Cheng, Z.; Sebastian, J. M.; Sethuraman, S.; Huse, D. A.; Chaikin, P. M. Science 2000, 290, 1558-1560.
81. Yoon, J.; Lee, W.; Thomas, E. L. Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed Bragg reflectors. Nano letters. 2006, 6, 2211-2214.
82. Varghese, L. T.; Xuan, Y.; Niu, B.; Fan, L.; Bermel, P.; Qi, M.Enhanced Photon Management of Thin-Film Silicon Solar Cells Using Inverse Opal Photonic Crystals with 3D Photonic Bandgaps. Adv. Opt. Mater. 2013, 1, 692 – 698.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code