Responsive image
博碩士論文 etd-0703115-163906 詳細資訊
Title page for etd-0703115-163906
論文名稱
Title
利用高分子量嵌段共聚物模板製備圖案化網狀微結構及其光學應用
Patterned Network Microstructures from High-Mw Block Copolymer Templates for Optical Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-08-03
關鍵字
Keywords
複合物、光學圖案化、嵌段共聚物、三相混摻、無序型光子晶體
photopatterned, hybrid, ternary blends, amorphous photonic crystal, block copolymer
統計
Statistics
本論文已被瀏覽 5639 次,被下載 32
The thesis/dissertation has been browsed 5639 times, has been downloaded 32 times.
中文摘要
首先,在大分子量嵌段共聚合物PS-PMMA薄膜中,藉由自組裝的方式可以得到一維或者是三維的光子晶體。並且透過選擇性溶劑的退火製程,可以獲得短程有序的網狀結構,這些結構展現出反射可見光波段的光學性質且具備與角度無相關的特色──稱之為無序型光子晶體,並且擁有對於外界溶劑感知的溶致變色特性。有趣的是,我們可以透過與均聚物PS-PMMA/PS/PMMA三相混摻的方式得到較大尺度的微相分離結構以及反射波段紅移的結果。此外,利用不同的混摻比例可以調控此高分子薄膜具有有序或無序型光子晶體的特性。由於PMMA經紫外光曝曬後具可裂解的特性,我們可以藉由此方法得到具網狀微結構之多孔高分子模板,而此模板可用於後續的二氧化矽以及二氧化鈦之溶凝膠製程,也進一步地說明,藉由溶凝膠製程我們可以導入不同的介電常數材料於無序型光子晶體薄膜中。最後,我們結合了光學微影以及自組裝的技術,成功地得到光學圖案化之無序型光子晶體薄膜。此外,利用上述之溶凝膠製程,也可以進一步地製備有機、無機以及複合物材料於此圖案化無序型光子晶體薄膜。綜合以上結果,我們以創新的概念製備出具有可光學圖案化及可導入不同材料特性的有序或無序型光學薄膜,並且期許這些結果可用於許多實際的應用當中。
Abstract
Control of thin film morphologies through self-assembly of high-Mw polystyrene-b-poly (methyl methacrylate) (PS-PMMA) block copolymers (BCPs) are carried out to generate one-dimensional (1-D) or three-dimensional (3-D) polymer-based photonic crystals (PCs). By exposing the as-spun BCP film into a PMMA selective solvent for annealing, short-range ordered network morphologies can be obtained, resulting in the angle-independent reflected bands of amorphous photonic crystals (APCs) in responsive to external solvents in visible wavelength, namely solvatochromism. Performing BCP/homopolymer blends makes red shifting of the stop-band gaps due to the increased microdomain thickness. Most interestingly, the fabrication of the angle-dependent PCs or angle-independent APCs can be successfully carried out using PS-PMMA/PS/PMMA ternary blends. Taking advantage of the degradable characteristic of the PMMA segment allows us to first generate porous polymeric templates after exposure to UV irradiation and thereby inorganic SiO2 or TiO2 network microstructures via subsequent sol-gel processes and calcination, materializing the thin film photonic reflectors with high reflectivity and tunable refractive index contrast. Finally, with the integration of the top-down (i.e., photolithography) and bottom-up (i.e., rapid self-assembly) methods, the photopatterned APC thin films with organic, inorganic and hybrid materials are materialized for the first time. As a result, this provides a novel concept to materialize the organic, inorganic and hybrid APC or PC reflectors with the capability of pattern design in visible wavelengths for practical applications.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Tables ix
List of Figures x
Chapter 1. Introduction 1
1.1 Self-Assembly 1
1.2 Block Copolymer (BCP) Self-assembly 3
1.3 Photonic Crystals in Nature 7
1.3.1 Fabrication of Photonic Crystals from BCP self-assembly 9
1.3.2 Stimuli-Responded BCP Photonic Crystals 13
1.4 Control of Optical Reflectivity of BCP Photonic Crystals 16
1.5 Amorphous Photonic Crystals in Nature 20
1.5.1 Fabrication of Amorphous Photonic Crystals 21
1.6 Inorganic Replicates from Templating of Porous BCP 24
Chapter 2. Objectives 27
Chapter 3. Materials and Experimental Methods 28
3.1 Materials 28
3.2 Sample Preparation 29
3.2.1 Bulks Samples Preparation 29
3.2.2 Thin Film Samples Preparation 30
3.2.3 PS-PMMA/PS/PMMA Ternary Polymer Blends 30
3.2.4 Porous Polymeric Templates Preparation 31
3.2.5 Porous SiO2 Templates Preparation 31
3.2.6 Porous TiO2 Templates Preparation 31
3.3 Microstructural and Photonic Characterization 32
3.3.1 Transmission Electron Microscopy (TEM) 32
3.3.2 Scanning Electron Microscopy (SEM) 32
3.3.3 Reflectivity measurements 32
Chapter 4. Results and Discussion 34
4.1 Microphase Separation of High-Mw PS-PMMA BCPs in bulk 34
4.2 Characterization of PS-PMMA BCP Thin Films 35
4.2.1 Microphase Separation of the High-Mw PS-PMMA BCP in Thin Films 35
4.2.2 Optical Properties of PS-PMMA Thin Film Reflectors 38
4.3 Replication of Network Microstructures 44
4.3.1 Porous Polymeric Templates 44
4.3.2 Inorganic Network Microstructures by BCP Templating 45
4.3.3 Optical Properties of Amorphous Photonic Crystals 50
4.4 Self-Assembly of PS-PMMA/Homopolymers Blends 52
4.4.1 PS-PMMA/Homopolymer Blends in Bulk 53
4.4.2 PS-PMMA/PS/PMMA Ternary Blends in Thin Film 55
4.5 Inverted Porous Inorganic Materials by Templating from Ternary Blends 58
4.5.1 Porous Polymeric Templates 58
4.5.2 Optical Properties of Amorphous Photonic Crystals from Ternary Blends 60
4.5.3 Replication of Porous Microstructures by Inorganic Materials 63
4.6 Optical-Patterned Amorphous Photonic Crystal Thin Films 67
4.6.1 Solvatochromic Properties of Patterned APC Thin films 67
4.6.2 Replication of Patterned APC Thin Films 71
Chapter 5. Conclusions 73
Chapter 6. References 75
參考文獻 References
1. Lehn, J.-M. Supramolecular Chemistry: Receptors, Catalysts, and Carriers. Science 1985, 227, 849–856.
2. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular Self-assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254, 1312–1319.
3. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, Germany. 1995.
4. Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421.
5. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. Self-Assembly of 10-μm-Sized Objects into Ordered Three-Dimensional Arrays. J. Am. Chem. Soc. 2001, 123, 7677–7682.
6. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Spatiotemporal Concentration Patterns in a Surface Reaction: Propagating and Standing Waves, Rotating Spirals, and Turbulence. Phys. Rev. Lett. 1990, 65, 3013–3016.
7. Whitesides, G. M.; Ismagilov, R. F. Complexity in Chemistry. Science 1999, 284, 89–92.
8. Bates, F. S.; Fredrickson, G. H. Block Copolymers—Designer Soft Materials. Phys Today 1999, 52, 32–38.
9. Park, C.; Yoon, J.; Thomas, E. L. Enabling Nanotechnology with Self Assembled Block Copolymer Patterns. Polymer 2003, 44, 6725–6760.
10. Muthukumar M.; Ober C. K.; Thomas E. L. Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. Science 1997, 277, 1225–1232.
11. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic Area-Minimizing Surfaces in Block Copolymers. Nature 1988, 334, 598–601.
12. Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641–7644.
13. Lee, J. H.; Koh, C. Y.; Singer, J. P.; Jeon, S. J.; Maldovan, M.; Stein, O.; Thomas, E. L. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons. Adv. Mater. 2014, 26, 532–569.
14. Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z. Bio-inspired Variable Structural Color Materials. Chem. Soc. Rev., 2012, 41, 3297–3317.

15. Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062.
16. John, S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489.
17. Vlasov, Y A.; O'Boyle, M.; Hamann, H. F.; McNab, S. J. Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature 2005, 438, 65–69.
18. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Metal–Insulator–Semiconductor Optoelectronic Fibres. Nature 2004, 431, 826–829.
19. Knight, J. C.; Birks, T. A.; Russell, P. S.; and Atkin, D. M. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Opt. Lett. 1996, 21, 1547–1549.
20. Krauss, T. F.; De La Rue, R. M.; Brand, S. Two-Dimensional Photonic-Bandgap Structures Operating at Near-Infrared Wavelengths. Nature 1996, 383, 699–702.
21. Busch, K.; John, S. Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum. Phys. Rev. Lett.1999, 83, 967–970.
22. Finkelmann, H.; Kim, S. T.; Muñoz, A.; Palffy-Muhoray, P.; Taheri, B. Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers. Adv. Mater. 2001, 13, 1069–1072.
23. Foulger, S. H.; Jiang, P.; Lattam, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Photonic Crystal Composites with Reversible High-Frequency Stop Band Shifts. Adv. Mater. 2003, 15, 685–689.
24. Lee, Y.-J.; Braun, P. V. Tunable Inverse Opal Hydrogel pH Sensors. Adv. Mater. 2003, 15, 563–566.
25. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Electrically Color-Tunable Defect Mode Lasing in One-Dimensional Photonic-Band-Gap System Containing Liquid Crystal. Appl. Phys. Lett. 2003, 82, 3593–3595.
26. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Self-Assembled Polymeric Solid Films with Temperature-Induced Large and Reversible Photonic-Bandgap Switching. Nat. Mater. 2004, 3, 872–876.
27. Lawrence, J. R.; Shim, G. H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Dynamic Tuning of Photoluminescent Dyes in Crystalline Colloidal Arrays. Adv. Mater. 2005, 17, 2344–2349.
28. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. From Colour Fingerprinting to the Control of Photoluminescence in Elastic Photonic Crystals. Nat. Mater. 2006, 5, 179–184.
29. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. A Three-Dimensional Optical Photonic Crystal with Designed Point Defects. Nature 2004, 429, 538–542.
30. Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Tunable Block Copolymer/Homopolymer Photonic Crystals. Adv. Mater. 2000, 12, 812-814.
31. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. Two-Dimensional Block Copolymer Photonic Crystals. Polymer 2003, 44, 6549–6553.
32. Urbas, A. M.; Maldovan, M.; DeRege, P.; Thomas, E. L. Bicontinuous Cubic Block Copolymer Photonic Crystals. Adv. Mater. 2002, 14, 1850–1853.
33. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
34. Shi, L.; Zhang, Y.; Dong, B.; Zhan, T.; Liu, X.; Zi, J. Amorphous Photonic Crystals with Only Short-Range Order. Adv. Mater. 2013, 25, 5314–5320.
35. Forster, J. D.; Noh, H.; Liew, S. F.; Saranathan, V.; Schreck, C. F.; Yang, L.; Park ,J. G.; Prum, R. O.; Mochrie, S. G. J.; O'Hern, C. S.; Cao, H.; Dufresne, E. R.; Biomimetic Isotropic Nanostructures for Structural Coloration. Adv. Mater. 2010, 22, 2939–2944.
36. Harun-Ur-Rashid, M.; Imran, A. B.; Seki, T.; Ishii, M.; Nakamura H.; Takeoka, Y. Angle-Independent Structural Color in Colloidal Amorphous Arrays. ChemPhysChem 2010, 11, 579–583
37. Shi, L.; Yin, H.; Zhang, R.; Liu, X.; Zi, J.; Zhao, D. Macroporous Oxide Structures with Short-Range Order and Bright Structural Coloration: a Replication from Parrot Feather Barbs. J. Mater. Chem. 2010, 20, 90–93
38. Parker, A. R.; Townley, H. E.; Biomimetics of Photonic Nanostructures. Nat. Nano. 2007, 2, 347–353.
39. Kim, H.; Ge, J.; Kim, J.; Choi, S.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S. Structural Colour Printing Using a Magnetically Tunable and Lithographically Fixable Photonic Crystal. Nat. Photon. 2009, 3, 534–540.
40. Diao, Y. Y.; Liu, X. Y. Bring Structural Color to Silk Fabrics. Adv. Mater. Res. 2012, 441, 183–186.
41. Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Photonic-Crystal Full-Colour Displays. Nat. Photon. 2007, 1, 468–472.
42. Lee, I.; Kim, D.; Kal, J.; Baek, H.; Kwak, D.; Go, D.; Kim, E.; Kang, C.; Chung, J.; Jang,Y.; Ji, S.; Joo, J.; Kang, Y. Quasi-Amorphous Colloidal Structures for Electrically Tunable Full-Color Photonic Pixels with Angle-Independency. Adv. Mater. 2010, 22, 4973–4977.
43. Miyazaki, H.; Hase, M.; Miyazaki, H. T.; Kurokawa, Y.; Shinya, N. Photonic Material for Designing Arbitrarily Shaped Waveguides in Two Dimensions. Phys. Rev. B 2003, 67, 235109.
44. Edagawa, K.; Kanoko, S.; Notomi, M. Photonic Amorphous Diamond Structure with a 3D Photonic Band Gap. Phys. Rev. Lett. 2008, 100, 013901.
45. Rechtsman, M.; Szameit, A.; Dreisow, F.; Heinrich, M.; Keil, R.; Nolte, S.; Segev, M. Amorphous Photonic Lattices: Band Gaps, Effective Mass, and Suppressed Transport. Phys. Rev. Lett. 2011, 106, 193904.
46. Vynck, K.; Burresi, M.; Riboli, F.; Wiersma, D. S. Photon Management in Two-Dimensional Disordered Media. Nat. Mater. 2012, 11, 1017–1022.
47. Noh, H.; Yang, J.; Liew, S. F.; Rooks, M. J.; Solomon, G. S.; Cao, H. Control of Lasing in Biomimetic Structures with Short-Range Order. Phys. Rev. Lett. 2011, 106, 183901.
48. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science 1997, 276, 1401–1404.
49. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Nanoscopic Templates from Oriented Block Copolymer Films. Adv. Mater. 2000, 12, 787–791.
50. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Fabrication of Nanostructures with Long-Range Order Using Block Copolymer Lithography. Appl. Phys. Lett. 2002, 81, 3657–3659.
51. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. Mesoporous Polystyrene Monoliths. J. Am. Chem. Soc. 2001, 123, 1519–1520.
52. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers:  Nanochannels Coated with Metals. Langmuir 1997, 13, 6869–6872.
53. Chan, V.Z.-H.; Hoffman, J.; Lee, V. Y.; Latrou, H.; Avgeropoulos, A.; Hadjichristidis, N.; Miller, R. D.; Thomas, E. L. Ordered Bicontinuous Nanoporous and Nanorelief Ceramic Films from Self Assembling Polymer Precursors. Science 1999, 286, 1716–1719
54. Tseng, W. H.; Chen, C. K.; Chiang, Y.W.; R. M. Ho,; Akasaka S.; Hasegawa, H. Helical Nanocomposites from Chiral Block Copolymer Templates. J. Am. Chem. Soc. 2009, 131, 1356–1357.
55. Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L. Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Lett. 2010, 10, 4994–5000
56. Hsueh, H. Y.; Ho, R. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28, 8518–8529.
57. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Lett. 2009, 9, 2807–2812.
58. Crossland, E. J. W.; Ludwigs, S.; Hillmyer, M. A.; Steiner, U. Control of Gyroid Forming Block Copolymer Templates: Effects of an Electric Field and Surface Topography. Soft Matter 2010, 6, 670–676.
59. Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U. A 3D Optical Metamaterial Made by Self-Assembly. Adv. Mater. 2011, 24, OP23–OP27.
60. Scherer, M. R. J.; Li, L.; Cunha, P. M. S.; Scherman, O. A.; Steiner, U.; Enhanced Electrochromism in Gyroid-Structured Vanadium Pentoxide. Adv. Mater. 2012, 24, 1217–1221.
61. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U.; A Nanostructured Electrochromic Supercapacitor. Nano Lett. 2012, 12, 1857–1862.
62. Scherer, M. R. J.; Steiner, U. Efficient Electrochromic Devices Made from 3D Nanotubular Gyroid Networks. Nano Lett. 2013, 13, 3005–3010.
63. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers:  Nanochannels Coated with Metals. Langmuir 1997, 13, 6869–6872.
64. Railsback, J. G.; Johnston-Peck, A. C.; Wang, J.; Tracy, J. B. Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles. ACS Nano 2010, 4, 1913–1920.
65. du Sart, G. G.; Vukovic, I.; Vukovic, Z.; Polushkin, E.; Hiekkataipale, P.; Ruokolainen, J.; Loos, K.; ten Brinke, G. Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules. Macromol. Rapid Commun. 2011, 32, 366–370.
66. Hsueh, H. Y.; Ho, R. M.; Huang, Y. C.; Lai, C. H.; Makida, T.; Hasegawa, H. Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Adv. Mater. 2011, 23, 3041–3046.
67. Hsueh, H. Y.; Chen, H. Y.; Hung, Y. C.; Ling, Y. C.; Gwo, S.; Ho, R. M. Well-Defined Multibranched Gold with Surface Plasmon Resonance in Near-Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Adv. Mater. 2013, 25, 1780–1786.
68. Li, F.; Yao, X.; Wang, Z.; Xing, W.; Jin, W.; Huang, J.; Wang, Y. Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Lett. 2012, 12, 5033–5038.
69. Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S. V.; Steiner, U. Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. Adv. Funct. Mater. 2014, 24, 863–872.
70. Kim, G.; Libera, M. Morphological Development in Solvent-Cast Polystyrene-Polybutadiene-Polystyrene (SBS) Triblock Copolymer Thin Films. Macromolecules 1998, 31, 2569–2577.
71. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation. Adv. Mater. 2004, 16, 226–231.
72. Morkved, T. L.; Lu, M.; Urbas, A. M.; Elrich, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. Science 1996, 273, 931–933.
73. Koppi, K. A.; Tirrell, M.; Bates, F. S. Shear-Induced Isotropic-to-Lamellar Transition. Phys. Rev. Lett. 1993, 70, 1449–1452.
74. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. The Effect of Temperature Gradient on the Microdomain Orientation of Diblock Copolymers Undergoing an Order−Disorder Transition. Macromolecules 1999, 32, 952–954
75. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Microdomain Patterns from Directional Eutectic Solidification and Epitaxy. Nature 2000, 405, 433–437.
76. Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P.; Yoon, M.; Mochrie, S. G. J. Polymers on Nanoperiodic, Heterogeneous Surfaces. Phys. Rev. Lett. 1999, 82, 2602–2605.
77. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates. Nature 2003, 424, 411-414.
78. Ryu, D. Y.; Shin, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P. Generalized Approach to the Modification of Solid Surfaces. Science 2005, 308, 236–239.
79. Stoykovich, M. P.; Muller, M.; Kim, S. O.; Solak, H. H.; Edwards, E. W.; de Pablo, J. J.; Nealey, P. F. Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science 2005, 308, 1442–1446.
80. Hawker, C. J.; Russell, T. P. Block Copolymer Lithography: Merging Bottom-Up with Top-Down Processes. MRS Bull. 2005, 30, 952–966.
81. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of Spherical Domain Block Copolymer Films. Adv. Mater. 2001, 13, 1152.
82. Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up. Adv. Mater. 2006, 18, 2505.
83. Takeoka, Y. Angle-Independent Structural Coloured Amorphous Arrays. J. Mater. Chem. 2012, 22, 23299−23309.
84. Rudov, A. A.; Patyukova, E. S.; Neratova, I. V.; Khalatur, P. G.; Posselt, D.; Papadakis, C. M.; Potemkin, I. I. Structural Changes in Lamellar Diblock Copolymer Thin Films upon Swelling in Nonselective Solvents. Macromolecules 2013, 46, 5786−5795.
85. Chiang, Y. W.; Chou, C. Y.; Wu, C. S.; Lin, E. L.; Yoon, J.; Thomas, E. L. Large-Area Block Copolymer Photonic Gel Films with Solvent-Evaporation-Induced Red- and Blue-Shift Reflective Bands. Macromolecules 2015, 48, 4004−4011.
86. Soler-Illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102, 4093−4138.
87. Lu, A.-H.; Schüth, F. Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials. Adv. Mater. 2006, 18, 1793−1805.
88. Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials. Adv. Mater. 2006, 18, 2073−2094.
89. Liang, C.; Li, Z.; Dai, S. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem., Int. Ed. 2008, 47, 3696−3717.
90. Ma, T. Y.; Liu, L.; Yuan, Z.-Y. Direct Synthesis of Ordered Mesoporous Carbons. Chem. Soc. Rev. 2013, 42, 3977−4033.
91. Triantafillidis, C.; Elsaesser, M. S.; Hüsing, N. Chemical Phase Separation Strategies towards Silica Monoliths with Hierarchical Porosity. Chem. Soc. Rev. 2013, 42, 3833−3846.
92. Gérardin, C.; Reboul, J.; Bonne, M.; Lebeau, B. Ecodesign of Ordered Mesoporous Silica Materials. Chem. Soc. Rev. 2013, 42, 4217−4255.
93. Yin, H. W.; Dong, B. Q.; Liu, X. H.; Rong, T. R.; Shi, L.; Zi, J.; Yablonovitch, E. Amorphous Diamond-Structured Photonic Crystal in the Feather Barbs of the Scarlet Macaw. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 , 10798−10801.
94. Wijnhoven, J. E. G. J.; Vos, W. L. Preparation of Photonic Crystals Made of Air Spheres in Titania. Science 1998, 281, 802−804
95. Primo, A.; Corma, A.; García, H. Titania Supported Gold Nanoparticles as Photocatalyst. Phys. Chem. Chem. Phys. 2010, 13, 886−910.
96. Hashimoto, T.; Hasegawa, H.; Tanaka, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules 1990, 23, 4378–4386.
97. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Isothermal Morphology Diagrams for Binary Blends of Diblock Copolymer and Homopolymer. Macromolecules 1992, 25, 2645–2650.
98. Koizumi, S.; Hasegawa, H.; Hashimoto, T. Ordered Structure of Block Polymer/Homopolymer Mixtures, 4. Vesicle Formation and Macrophase Separation. Makromol. Chem. Macromol. Symp. 1992, 62, 75–91.
99. Fudouzi, H.; Xia, Y. Photonic Papers and Inks: Color Writing with Colorless Materials Adv. Mater. 2003, 15, 892–896.
100. Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Loncar, M.; Aizenberg, J. Encoding Complex Wettability Patterns in Chemically Functionalized 3D Photonic Crystals. J. Am. Chem. Soc. 2011, 133, 12430–12432.
101. Kang, P.; Ogunbo, S. O.; Erickson, D. High Resolution Reversible Color Images on Photonic Crystal Substrates. Langmuir 2011, 27, 9676−9680.
102. Xu, T.; Stevens, J.; Villa, J. A.; Goldbach, J. T.; Guarini, L. W.; Black, C. T.; Hawker, C. J.; Russell, T. P. Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. Adv. Funct. Mater. 2003, 13, 698−702.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code