Responsive image
博碩士論文 etd-0703115-205935 詳細資訊
Title page for etd-0703115-205935
論文名稱
Title
一具有溝槽式交指背接觸異質單晶矽高效率太陽能電池
A Trench-shaped Crystalline Silicon Heterojunction Solar Cell with an Interdigitated Back Contact Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-03
關鍵字
Keywords
遮蔭效應、交指式背接觸電極、異質接面、非晶矽材料、太陽能電池
interdigitated back contact, heterojunction, solar cell, amorphous material, shadow effect
統計
Statistics
本論文已被瀏覽 5685 次,被下載 54
The thesis/dissertation has been browsed 5685 times, has been downloaded 54 times.
中文摘要
將太陽能電池的電極和射極設計於背面的概念,造就交指式太陽能電池在未來市場是很有潛力達到高轉換效率的。在本篇論文中,我們提出了一具有溝槽式本體和交指式背接觸電極異質單晶矽高轉換效率太陽能電池(A Trench-shaped Crystalline Silicon Heterojunction Solar Cell with an Interdigitated Back Contact Structure, TS-IBC )。傳統HIT太陽能電池上表面使用之金屬電極不透光,使得光子進入本體層時有一遮蔭效應,讓部分光源無法進入本體而被吸收。本論文使用交指式背電極架構,將表面電極全設計於背面,克服遮蔭效應且讓光完全進入本體吸收層。我們並將本體蝕刻出一溝槽形狀(Trench-Shaped),此延伸的溝槽本體可以產生更多光產生載子,進而提升整體元件的短路電流密度。藉由溝槽本體,射極端能更有效收集少數載子,而背表面電場的分佈可以更廣泛有利於加速載子傳輸,減少少數載子的復合,使TS-IBC太陽能電池可以達到高轉換效率。在本論文中,幾種影響太陽能電池轉換效率之重要因素將被模擬和探討。諸如:表面是否形成一前表面電場層、溝槽深度、溝槽寬度比和薄膜厚度變化對元件特性之變化,和表面復合速率、面積和溫度對轉換效率的影響。結果在基本電性上,我們發現相對於無溝槽式的IBC太陽能電池,新TS-IBC太陽能電池會有6.03 %之短路電流密度提升,進而提升了轉換效率。此新架構的交指式背接觸電極太陽能電池的轉換效率可高達27.76 %,比現今轉換效率為25.6 %的IBC太陽能電池改善7.79 %的轉換效率。
Abstract
The concept of locating the emitter and electrodes of a solar cell at the rear thereby creating an interdigitated back contact has great potential to achieve higher power conversion efficiency in the future market. In this paper, we propose a new heterojunction with intrinsic thin-layer (HIT) structure with interdigitated back contacts and rear trench-shape body, called as TS-IBC solar cells. The conventional HIT solar cell is limited by the optical losses on the front grid caused crystalline silicon substrate cannot absorb a part of sunlight. In this paper, having all contacts on the rear side to form interdigitated back contact, which can overcome the shadowing loss. Furthermore, the crystalline silicon substrate of the new cell is etched into trench shape. This extended trench shape can generate more photo-generated carriers to achieve higher short-circuit current density and the emitter can allow more minority carriers being collected. The back surface field can also extend through the extended trench shape body to accelerate carrier transmission resulting in carrier recombination was reduced. So, the TS-IBC solar cell of crystalline silicon heterojunction structure can achieve higher power conversion efficiency. Several key factors affecting the power conversion efficiency of the solar cell, such as front surface field, trench depth, trench width ratio, film thickness, surface recombination velocity, pitch and temperature are also simulated and investigated. The TS-IBC structure is optimized by using TCAD software. Then, we found that this new structure has a higher short-circuit current density which is about 6.03 % higher than that of the conventional IBC cell. Also, the new TS-IBC structure achieves power conversion efficiency 27.76 % which is about 7.79 % better than that (25.6 %) of the conventional IBC HIT solar cell.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
誌謝 iii
中文摘要 iv
英文摘要 v
圖次 viii
表次 xiii
第一章 導論 1
1.1 研究背景 1
1.2 論文回顧 2
1.3 動機 7
第二章 元件製作 9
2.1 模擬元件 9
2.2 元件實作 12
第三章 元件設計與模擬 15
3.1 一具有溝槽式交指背接觸異質單晶矽高效率太陽能電池 15
3.1.1 模擬之物理模型 15
3.2 IBC太陽能電池 16
3.3 溝槽式交指背接觸太陽能電池 18
3.3.1 元件結構說明 19
3.3.2 輸入特性曲線 20
3.4 交指式太陽能電池的邊際效應之比較 60
3.5 太陽能電池實作結果與量測 63
3.5.1 傳統無溝槽IBC太陽能電池之I-V量測。 65
3.5.2 TS-IBC太陽能電池之I-V量測 67
第四章 結論與未來展望 69
4.1 結論 69
4.2 未來展望 70
參考文獻 71
附錄A 77
矽晶太陽能電池結構 77
太陽能電池的基本參數 78
短路電流密度 (Isc) 79
開路電壓 (Voc) 79
填充因子 (F.F.) 80
轉換效率 (η) 81
太陽光譜 83
內部量子效率 84
外部量子效率 85
異質接面 (Heterojunction) 85
抗反射層 86
前表面電場與背表面電場效應 88
太陽能電池損失能量來源 88
輻射復合 (Radiative Recombination) 89
蕭克力萊德霍爾復合 (Shockley-Read-Hall Recombination) 90
歐傑復合 (Auger Recombination) 90
參考文獻 References
[1] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E.Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE J. Photovoltaics, pp. 1-4, 2013.
[2] S. T. Pantelides, Defect dynamics and the Staebler–Wronski effect in hydrogenated amorphous silicon, Phys. Rev. B 36, vol. 36, pp. 3479, 1987.
[3] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer),” Jpn. J. Appl. Phys., Part 1, vol. 31, pp. 3518-3522, 1992.
[4] M. Edwards, S. Bowden, U. Das, M. Burrows, “Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells,” Solar Energy Mater. Solar Cells 92, 2008, pp. 1373-1377.
[5] Descoeudres, Z. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% efficient silicon heterojunction solar cells on n- and p-type wafers compared,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 83-89, Jan. 2013.
[6] Y. Hayashi, L. Debin, A. Ogura, and Y. Ohshita, “Role of i-aSi:H layers in aSi:H/cSi heterojunction solar cells,” IEEE J. Photovoltaics, vol. 3, no. 4, pp. 1149-1155, Oct. 2013.
[7] R. Lachaume, J. Coignus, X. Garros, P. Scheiblin, F. De Crécy, D. Muñoz, and G. Reimbold, “Impact of bulk defects in hydrogenated amorphous Si layers on performance of high-efficiency heterojunctions solar cells assessed by 2D modelling,” in Proceedings of the 13th IEEE International Conference on Ultimate Integration on Silicon, 2012.
[8] Z. C. Holman, A. Descoeudres, L. Barraud, F. Zicarelli, J. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics, vol. 2, no. 1, pp. 7-15, Jan. 2012.
[9] W. Favre, J. Coignus, N. Nguyen, R. Lachaume, R. Cabal, and D. Munoz, “Influence of the transparent conductive oxide layer deposition step on electrical properties of silicon heterojunction solar cells,” Appl. Phys. Lett. vol. 102, pp. 181118, 2013.
[10] Z. C. Holman, A. Descoeudres, S. D. Wolf, and C. Ballif, “Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors,” IEEE J. Photovoltaics, vol. 3, no. 4, Oct. 2013.
[11] J. P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z. C. Holman, S. D. Wolf, and C. Ballif, “Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells,” J. Appl. Phys., vol. 115, pp. 024502, 2014.
[12] S. Saha, M. M. Hilali, E. U. Onyegam, D. Sarkar, D. Jawarani, R. A. Rao, L. Mathew, R. S. Smith, D. Xu, U. K. Das, B. Sopori, and S. K. Banerjee, “Single heterojunction solar cells on exfoliated flexible 25 μm thick mono-crystalline silicon substrates,” Appl. Phys. Lett. ,vol. 102 pp. 163904, 2013.
[13] F. J. Henley, “Kerf-free wafering: technology overview and challenges for thin PV manufacturing,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 1184-1192.
[14] R. Martini, M. Gonzales, F. Dross, A. Masolin, J. Vaes, G. Frederickx, and J. Poortmans, “Epoxy-induced spalling of silicon”, Energy Procedia, vol. 27, pp. 567-572, 2012.
[15] S. Y. Herasimenka, W. J. Dauksher, and S. G. Bowden, “>750mV open circuit voltage measured on 50 μm thick silicon heterojunction solar cell,” Appl. Phys. Lett. vol. 103, pp. 053511, 2013.
[16] T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K.Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, M. Taguchi, and E. Maruyama, “The approaches for high efficiency HIT solar cell with very thin (<100 μm) silicon wafer over 23%,” in Proc. 26th Eur. PV Sol. Energy Conf., 2011, pp. 871-874.
[17] M. Taguchi, Y. Tsunomura, H. Inoue, S. Taira, T. Nakashima, T. Baba, H. Sakata, and E. Maruyama, “High-efficiency HIT solar cell on thin (<100 μm) silicon wafer,” in Proc. 24th Eur. Photovoltaic Sol. Energy Conf., 2009, pp. 1690-1693.
[18] X. Fang, Y. Li, X. Wang, J. Ding, and N. Yuan, “Ultrathin interdigitated back-contacted silicon solar cell with light-trapping structures of Si nanowire arrays,” Solar Energy, vol. 116, pp. 100-107, 2015.
[19] W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si:H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett., vol. 99, pp. 033107, 2011.
[20] J. Zhao, A. Wang, P. Campbell, and M. A. Green, “22.7% efficient PERL silicon solar cell module with a textured front surface,” in Proc. of the 26th IEEE Photovoltaic Specialists Conference, 1997, pp. 1133-1136.
[21] J. Zhao, A. Wang, and M. A. Green, “24% efficient PERL structure silicon solar cells,” in Conf. Rec. 21st IEEE Photovoltaic Specialists Conference, 1990, pp. 333-5.
[22] J. Zhao. A. Wang, and M. A. Green, “24.5% Efficiency PERT Silicon Solar Cells on SEH MCZ Substrates and Cell Performance on other SEH CZ and FZ Substrates,” Solar Energy Materials & Solar Cells, 66, 2001, pp. 27-36.
[23] J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7 % efficiency PERL cells on FZ substrates,” Prog. Photovolt., Res. Appl., vol. 7, pp. 471-474, 1999.
[24] J. Benick, B. Steinhauser, R. Muller, J. Bartsch, M. Kamp, A. Mondon, A. Richter, M. Hermle, and S. Glunz, “High efficiency n-type PERT and PERL solar cells, ” in Proc. of the 40th IEEE Photovoltaic Specialist Conference, 2014, pp. 3637-3640.
[25] J. Zhao, A. Wang, P. P. Altermatt, M. A. Green, J. P. Rakotoniaina, and O. Breitenstein, “High Efficiency PERT Cells on N-Type Silicon Substrates,” in Proc. of the 29th IEEE Photovoltaic Specialist Conference, New Orleans, May, 2002, pp. 218-221.
[26] J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, “High efficiency n-type Si solar cells on Al 2O3-passivated boron emitters,” Appl. Phys. Lett., vol. 92, pp. 253504, 2008.
[27] G. Coletti, Y. Wu, G. Janssen, J. Loffler, B. B. van, Aken, F. Li, Y. Shen, W. Yang, J. Shi, G. Li, Z. Hu, and J. Xiong, “20.3% MWT Silicon Heterojunction Solar Cell- A Novel Heterojunction Integrated Concept Embedding Low Ag Consumption and High Module Efficiency,” IEEE J. Photovoltaics, vol. 5, no. 1, Jan. 2015.
[28] T. Fellmeth, M. Ebert, R. Efinger, I. Hädrich, F. Clement, D. Biro, P. Noriega, S. Caparros, and F. J. Castano, “Industrially Feasible All-Purpose Metal-Wrap-Through Concentrator Solar Cells,” in 40th IEEE Photovoltaic Specialists Conference, 2014, pp. 2106-2110.
[29] N. Bateman, D. Tonini, M. Galiazzo, G. Cellere, “Ion implanted metal wrap through silicon solar cells,” in 39th IEEE Photovoltaic Specialists Conference, 2013, pp. 1203-1206.
[30] P. Magnone, R. De Rose, D. Tonini, M. Frei, M. Zanuccoli, A. Belli, M. Galiazzo, E. Sangiorgi, and C. Fiegna, “Numerical Simulation on the Influence of Via and Rear Emitters in MWT Solar Cells,” IEEE J. Photovoltaics, vol. 4, no. 4, pp. 1032-1039, Jul. 2014.
[31] R. Hoenig, F. Clement, M. Menkoe, M. Retzlaff, D. Biro, R. Preu, M. Neidert, A. Henning, C. Mohr, and W. Zhang2, “PASTE DEVELOPMENT FOR SCREEN PRINTED MC-SI MWT SOLAR CELLS EXCEEDING 17 % EFFICIENCY,” in 35th Photovoltaic Specialists Conference, 2010, pp. 3167-3172.
[32] P. Magnone, D. Tonini, R. De Rose, M. Frei, F. Crupi, E. Sangiorgi, and C. Fiegna, “Numerical Simulation and Modeling of Resistive and Recombination Losses in MWT Solar Cells, ”IEEE J. Photovoltaics, vol. 3, no. 4, pp. 1215-1221, Oct. 2013.
[33] M. Barbato, M. Meneghini, A. Cester, A. Barbato, E. Zanoni, and G. Meneghesso, “Stress-Induced Instabilities of Shunt Paths in High Efficiency MWT Solar Cells,” in IEEE international Reliability Physics Symposium, Apr. 2015, pp. 3E.3.1-3E.3.5.
[34] D. C. Wu, J. C. Shiao, C. H. Chen, C. C. Lin, C. H. Lin, W. H. Lu, and C. L. Chen, “Development of hetero-junction a-Si/c-Si based on metal wrap through structure solar cells,” in Proc. 37th IEEE Photovoltaic Spec. Conf., 2011, pp. 1515-1518.
[35] M. D. Lammert, and R. J. Schwartz, “The interdigitated back contact solar cell: A silicon solar cell for concentrated sun-light,” IEEE Trans. Electron Devices, vol. ED-24, no. 4, pp. 337-342, Apr. 1977.
[36] J. H. Choi, J. C. Lee, S. K. Kim, H. Park, K. H. Kim, and W. J. Lee, “Industrial Development of Silicon Hetero-junction Back Contact Solar Cells,” in Proc. 38th IEEE Photovoltaic Specialists Conference , 2012.
[37] Y. Y. Chen, L. Korte, C. Leendertz, J. Haschke, J. Y. Gana, D. C. Wu, “Simulation of Contact Schemes for Silicon Heterostructure Rear Contact Solar Cells,” Energy Procedia, 2013.
[38] D. H. Neuhaus, and A. Münzer, “Industrial Silicon Wafer Solar Cells”, Advances in OptoElectronics, ID 24521, 2007.
[39] S. D. Vecchia, T. Blévina, T. Desruesa, F. Souchea, D. Muñoza, M. Lemitib, and P. J. Ribeyrona, “New metallization scheme for interdigitated back contact silicon heterojunction solar cells,” Energy Procedia 38, 2013, pp. 701-706.
[40] R. Jeyakumar, T. K. Maiti, A. Verma, “Two-dimensional simulation studies on high-efficiency point contact back heterojunction (a-Si:H/c-Si) solar cells,” Sol. Energy vol. 105 ,2014 ,pp. 109-115.
[41] M. Lu, U. Das, S. Bowden, S. Hegedus, R. Birkmire, “Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation,” in Proc. 34th IEEE Photovoltaic Specialists Conference, 2009, pp. 001475-001480.
[42] J. B. Dong, L. Z. Tao, Y. B. Zhu, Z. J. Yang, Z. Y. Xia, R. B. Sidhu, and G. Q. Xing, “High-efficiency full back contacted cells using industrial processes,” IEEE J. Photovoltaics, vol. 4, pp. 130-133, 2014.
[43] D. S. Kim, V. Meemongkolkiat, A. Ebong, B. Rounsaville, V. Upadhyaya, A. Das, and A. Rohatgi, “2D-modeling and development of interdigitated back contact solar cells on low-cost substrates”, in Proc. of the 4th IEEE World Conference on Photovoltaic Energy Conversion, May 2006.
[44] T. Ohrdes, U. Romer, Y. Larionova, R. Peibst, P. P. Altermatt, and N. P. Harder, “High fill-factors of back-junction solar cells without front surface field diffusion,” in Proc. 27th Eur. Photovoltaic Sol. Energy Conf. Exhib., 2012, pp. 866-869.
[45] T. Desrues, S. D. Vecchi, G. d’A’onzo, D. Muñoz, P. J. Ribeyron, “Influence of the emitter coverage on interdigitated back contact (IBC) silicon heterojunction (SHJ) solar cells,” in Proc. 40th IEEE Photovoltaic Specialists Conference, 2014, pp. 0857-0861.
[46] M. Lu, S. Bowden, U. Das, and R. Birkmire, “Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation,” Appl. Phys. Lett., vol. 91, pp. 063507, 2007.
[47] C. Gong, E. Van Kerschaver, J. Robbelein, T. Janssens, N. Posthuma, J. Poortmans, and R. Mertens, “Screen-printed aluminum-alloyed p+-emitter on high-efficiency n-type interdigitated back-contact silicon solar cells,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 576-578, Jun. 2010.
[48] S. M. Kim, S. Chun, M. G. Kang, H. E. Song, J. H. Lee, H. Boo, S. Bae, Y. Kang, H. S. Lee, and D. Kim, “Simulation of interdigitated back contact solar cell with trench structure,” J. Appl. Phys., vol. 117, pp. 074503, 2015.
[49] D. Diouf, J. P. Kleider, T. Desrues, and P. J. Ribeyron, “Study of Interdigitated Back Contact Silicon Heterojunctions Solar Cells by Two-dimensional Numerical simulations”, Mat. Sc. and Eng.: B, 2009, pp. 291-294.
[50] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell,” IEEE J. Photovoltaics, vol. 4, no. 6, pp. 1433-1435, Nov. 2014.
[51] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 44),” Prog. Photovoltaic Res. Appl., vol. 22, pp. 1-9, 2014.
[52] N. Batemana, P. Sullivana, C. Reichelb, J. Benickb, M. Hermleb, “High quality ion implanted boron emitters in an interdigitated back contact solar cell with 20% efficiency,” Energy Procedia, 2011, pp. 509-514.
[53] Silvaco, Inc. Atlas User’s Manual DEVICE SIMULATION SOFTWARE Available: www.silvaco.com
[54] W. Müller , L. Risch, and A. Schütz, “A short-channel MOS transistor in the avalanche multiplication regime”, IEEE Trans. Electron Devices, vol. 29, no. 11, pp. 1778-1784, 1982.
[55] J. Dziewior, and W. Schmid, “Auger coefficients for highly doped and highly excited silicon”, Appl. Phys. Lett., vol. 31, pp. 346-348, 1977.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code