Responsive image
博碩士論文 etd-0703116-145117 詳細資訊
Title page for etd-0703116-145117
論文名稱
Title
合成石墨烯/氧化鎳/氧化鈷複合材料在氧氣還原及析氧反應之催化
Control Synthesis of Graphene/NiO/CoO Bifunctional Catalyst for Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-27
繳交日期
Date of Submission
2016-08-09
關鍵字
Keywords
析氧反應、氧氣還原反應、中空球、氧化石墨烯、燃料電池、水熱法
oxygen reduction reaction, fuel cell, hydrothermal, oxygen evolution reaction, graphene oxide, hollow sphere
統計
Statistics
本論文已被瀏覽 5681 次,被下載 50
The thesis/dissertation has been browsed 5681 times, has been downloaded 50 times.
中文摘要
在這項研究中,我們利用水熱的方式合成出Graphene/NiO/CoO的複合材料,這Graphene/NiO/CoO的複合材料具有析氧反應及氧氣還原反應的雙效催化活性。經由SEM、TEM的結構鑑定,其結構是由許多極小的奈米顆粒(2奈米)形成的中空球結構。這種複合材料催化劑在合成過程中,改變金屬前驅物會有中空及非中空的差異,而中空結構有利於OER催化,以醋酸鈷合成出的催化劑(中空)OER 過電位為0.38 V v.s RHE,硝酸鈷合成出的催化劑(非中空)為0.41 V v.s RHE (皆在電流密度為10 mA cm-2),而中空結構的形成是由於油胺作為界面活性劑,使得金屬氧化物聚集在水跟DMF的接面,以類似微胞的方式生成中空球。而醋酸根及硝酸根與金屬離子的親和力不同,硝酸根會降低油胺配位程度,導致中空結構無法形成。
在我們合成出的催化劑中,以醋酸鈷及硝酸鎳合成出的催化劑有最好的OER活性(過電位為0.36 V v.s RHE在電流密度為10 mA cm-2),但在1000次的催化循環後最大電流密度掉16.4%,是所有催化劑中最差的,而在不加graphene的控制實驗中,我們發現graphene可能只是包覆在中空球上,推測在OER反應過程中,graphene會剝落而造成活性下降,所以穩定性不好。
Abstract
In this work, we synthesized NiO/CoO/Graphene composites by hydrothermal method. This composites are bifunctionally active for oxygen reduction and oxygen evolution reaction simultaneously. According to the SEM and TEM results, the hollow sphere structure is composed of small nanoparticles (2 nm). In the synthetic procedure, different precursors result in controlled hollow structures associated with the material performance. The composites prepared with metal acetate precursors tends to form hollow sphere structure, more active for oxygen evolution reaction (overpotential : 0.38 V at current density 10 mA cm-2) than those prepared with metal nitrate precursors without hollow structures (overpotential : 0.41 V at current density 10 mA cm-2). The formation of hollow structures might attribute to that oleylamine is soluble in DMF but not in water. By using oleylamine as the surfactant, the precursors of the hollow sphere assemble to hollow micelles at the interface of DMF and water. On the other hand, nitrate anions have stronger attraction to cobalt(II) and nickel(II) than acetate anions, and thus hollow spheres can not form.
The acetate-assisted composites show best OER activity compared to other catalyst research (overpotential: 0.36 V at current density 10 mA cm-2). But maximum current density shows the decay by 16.4% after 1000 catalytic cycles. We found that graphene may be dropped from the surface of hollow sphere during oxygen evolution reaction, leading to the lower OER stability.
目次 Table of Contents
論文審定書..................................................................................................................... i
謝誌................................................................................................................................ii
摘要.............................................................................................................................. iii
Abstract ......................................................................................................................... iv
目錄................................................................................................................................ v
圖目錄........................................................................................................................ viii
圖表目錄.....................................................................................................................xiii
第一章、序論................................................................................................................ 1
1.1研究動機 .............................................................................................................. 2
1.2研究背景 .............................................................................................................. 3
1.2.1 氧氣還原反應Oxygen reduction reaction (ORR) .............................................. 3
1.2.2 析氧反應Oxygen evolution reaction (OER)...................................................... 5
1.2.3 具有ORR及OER催化活性的催化劑之應用 ................................................. 7
1.2.4 石墨烯及氧化石墨烯介紹 ............................................................................... 9
1.2.5 N-doped graphene ........................................................................................... 13
1.2.6 Nickel、Cobalt的OER或ORR催化劑介紹.................................................. 14
第二章、實驗樣品合成及實驗方法.......................................................................... 15
2.1實驗藥品 ............................................................................................................ 15
2.2合成氧化石墨烯 (GO)...................................................................................... 16
2.3催化劑合成與設計 ............................................................................................ 17
2.4電化學測量 ........................................................................................................ 19
2.4.1 氧氣還原反應之電化學量測 ......................................................................... 19
2.4.2 析氧反應之電化學量測 ................................................................................ 21
2.4.3參考電位 ....................................................................................................... 22
第三章、實驗結果...................................................................................................... 25
3.1不同溫度下水熱 ................................................................................................ 25
vi
3.1.1 鑑定 .............................................................................................................. 25
3.1.2 電化學測量 ................................................................................................... 25
3.2 Graphene/NiO/CoO ............................................................................................ 27
3.2.1 鑑定 .............................................................................................................. 27
3.2.2 OER測量 ...................................................................................................... 33
3.2.3 ORR測量 ...................................................................................................... 35
3.3 改變GO添加量 ............................................................................................... 38
3.4 改變金屬前驅物的添加量比例 ....................................................................... 40
3.5更換金屬前驅物 ................................................................................................ 42
3.5.1 鑑定 .............................................................................................................. 42
3.5.2 電化學測量 ................................................................................................... 46
3.6 額外添加醋酸鈉 ............................................................................................... 48
3.6.1 鑑定 .............................................................................................................. 49
3.6.2 電化學測量 ................................................................................................... 53
3.7不加GO下合成 ................................................................................................ 57
3.7.1 NiO/CoO-Acetate (NC-A) .............................................................................. 57
3.7.2 NiO/CoO-Nitrate (NC-N) ................................................................................ 62
3.8 LSV掃描之OER催化與CV掃描之OER催化活性差異................................ 65
3.9 NiO與CoO的金屬氧化物顆粒混合rGO的OER活性測試 ....................... 67
3.10 物理混合NiO、CoO及rGO ........................................................................ 69
3.11以氯化鎳代替硝酸鎳作為前驅物合成催化劑 .............................................. 70
第四章、實驗結果討論.............................................................................................. 72
4.1 中空球結構對催化上的影響 ........................................................................... 72
4.2 OER穩定性差異原因探討 ............................................................................... 72
4-3形成中空球的可能原因.................................................................................... 75
4.4陰離子效應 ........................................................................................................ 75
4.5有晶相與非晶相對OER活性的影響 .............................................................. 78
第五章、結論.............................................................................................................. 80
vii
參考文獻...................................................................................................................... 81
附錄.............................................................................................................................. 85
一、實驗鑑定方法 .................................................................................................. 85
1.1 X-ray 繞射分析(X-ray diffraction) .................................................................... 85
1.2掃描式電子顯微鏡(Scanning electron microscope) ............................................. 86
1.3穿透式電子顯微鏡(Transmission electron microscopy) ...................................... 87
1.4電子能譜儀(X-ray photoelectron spectroscopy) .................................................. 88
參考文獻 References
(1) Jorissen, L. J. Power Sources 2006, 155, 23-32.
(2) Park, S. S., Y.; Liu, J.; Wang, Y. Energy Environ. Sci. 2012, 5, 9331.
(3) Jiang, S. Z., C.; Dong, S. J. Mater. Chem. A 2013, 1, 3593.
(4) Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. J. Am. Chem. Soc. 2012, 134, 3517-3523.
(5) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10, 780-786.
(6) Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y.; Guo, L. Adv. Energy Mater. 2015, 5, 1401880.
(7) Stern, L. A.; Hu, X. Faraday Discuss 2014, 176, 363-379.
(8) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135, 8452−8455.
(9) Guo, S.; Zhang, S.; Sun, S. Angew. Chem. Int. Ed. 2013, 52, 8526-8544.
(10) Yu, D. S.; Nagelli, E.; Du, F.; Dai, L. M. J. Phys. Chem. Lett. 2010, 1, 2165-2173.
(11) Tan, Y.; Xu, C.; Chen, G.; Fang, X.; Zheng, N.; Xie, Q. Adv. Funct. Mater. 2012, 22, 4584-4591.
(12) Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321-1326.
(13) Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760– 764.
(14) Jahan, M.; Bao, Q.; Loh, K. P. J. Am. Chem. Soc. 2012, 134, 6707-6713.
(15) Yu, L. P., X.; Cao, X.; Hu, P.; Bao, X. J. Catal. 2011, 282, 183-190.
(16) Norskov, J. K. R., J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886-11892.
(17) Li, X. L., G.; Popov, B. N. J. Power Sources 2010, 195, 6373-6378.
(18) Guo, J. H., A.; Chu, D.; Chen, R. J. Phys. Chem. C 2010, 114, 4324-4330.
(19) Kanan, M. W. a. N., D. G Science 2008, 321, 1072.
(20) Yeo, B. S.; Bell, A. T. J. Am. Chem. Soc. 2011, 133, 5587-5593.
(21) Hamdani, M. S., R. N.; Chartier, P. Int. J. Electrochem. Sci. 2010, 5, 556-577.
(22) Lyons, M. E.; Brandon, M. P. Phys. Chem. 2009, 11, 2203-2217.
(23) Chen, G., Bare, S. R. and Mallouk, T. E. J. Electrochem. Soc. 2002, 149, A1092-A1099.
(24) Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B. Chem. Soc. Rev. 2014, 43, 7746-7786.
(25) Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172-2192.
(26) Zhu, C.; Dong, S. Nanoscale 2013, 5, 1753-1767.
(27) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906-3924.
(28) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706-710.
(29) Hasan, T.; Torrisi, F.; Sun, Z.; Popa, D.; Nicolosi, V.; Privitera, G.; Bonaccorso, F.; Ferrari, A. C. Phys. Status Solidi B 2010, 247, 2953-2957.
(30) Fan, Z. W., K.; Wei, T.; Yan, J.; Song, L.; Shao, B. Carbon 2010, 48, 1686-1689.
(31) Kaniyoor, A. B., T. T.; Ramaprabhu, S. J. Mater. Chem. 2010, 20, 8467.
(32) Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J. D. Chem. Commun. 2011, 47, 6305–6307.
(33) Kudin, K. N. O., B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36-41.
(34) Sobon, G. S., J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K. M. Opt. Express 2012, 20, 19463-49473.
(35) Reich, S.; Thomsen, C.; Raman Spectroscopy of Graphite Philos. Trans. R. Soc. London, S. A. 2004, 362, 2271– 2288; .
(36) Yan, W.; Yang, Z.; Bian, W.; Yang, R. Carbon 2015, 92, 74-83.
(37) Bonaccorso, F. L., A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Mater. Today 2012, 15, 564-589.
(38) Deng, D. H. P., X. L.; Yu, L. A.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q. A.; Ma, X. C.; Xue, Q. K.; Sun, G. Q.; Bao, X. H. Chem. Mater. 2011, 23, 1188-1193.
(39) Chen, S. D., J.; Ran, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ. Sci. 2013, 6, 3693–3699.
(40) Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nat. Commun. 2013, 4, 2390.
(41) Kim, H.; Lee, K.; Woo, S. I.; Jung, Y. Phys. Chem. Chem. Phys. 2011, 13, 17505-17510.
(42) Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. J. Am. Chem. Soc. 2014, 136, 7077-7084.
(43) Xiao, J.; Wan, L.; Wang, X.; Kuang, Q.; Dong, S.; Xiao, F.; Wang, S. J. Mater. Chem. A 2014, 2, 3794-3800.
(44) Zhao, Y. S., B.; Huang, X.; Liu, H.; Su, D.; Sun, K.; Wang, G. J. Mater. Chem. A 2015, 3, 5402-5408.
(45) Basharat, F.; Rana, U. A.; Shahid, M.; Serwar, M. RSC Adv. 2015, 5, 86713-86722.
(46) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
(47) Debarati, R. C., C, S.; Amit, P. RSC Adv. 2014, 4, 15138–15145.
(48) Ai, K. L. L., Y. L.; Lu, L. H.; Cheng, X. L.; Huo, L. H. J. Mater. Chem. 2011, 21, 3365-3370.
(49) Bosch-Navarro, C.; Coronado, E.; Martí-Gastaldo, C. Carbon 2013, 54, 201-207.
(50) Salavati-Niasari, M. M., N.; Davar, F. J. Alloys Compd. 2010, 493, 163-168.
(51) Mao, S. W., Z.; Huang, T.; Hou, Y.; Chen, J. Energy Environ. Sci. 2014, 7, 609-616.
(52) Zheng, B. W., J.; Wang, F. B.; Xia, X. H. Electrochem. Commun. 2013, 28, 24-26.
(53) Li, Y.; Hasin, P.; Wu, Y. Adv. Mater. 2010, 22, 1926-1929.
(54) Ming, Q., Y.; Yu, H, Li; Shuang, Y.; Peng, F, L.; Lin, F, P.; Le, Z.;; Hua, G., Y. J. Mater. Chem. A, 2015, 3, 14101-14104.
(55) Roche, L. C., E.;; Chatenet, M. V., J. J. Phys. Chem. C 2007, 111, 1434-1443.
(56) Spivey, J., J.; Dooley, K, M. Catalysis 2007, 20, 309-337.
(57) Muzart, J. Tetrahedron 2009, 65, 8313-8323.
(58) Sun, Y. M. H., X. L.; Luo, W.; Huang, Y. H. J. Mater. Chem. 2012, 22, 13826.
(59) Li, M. W., W.; Ren, W.; Cheng, H.-M.; Tang, N.; Zhong, W.; Du, Y. Appl. Phys. Lett. 2012, 101, 103107.
(60) Zhang, L.; Xia, Z. J. Phys. Chem. C 2011, 115, 11170-11176.
(61) Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Chem. Commun. 2008, 4213-4215.
(62) Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925-13931.
(63) Pan, W. Y., J.; Ning, G.; Lin, Y.; Wang, J. Mater. Res. Bull. 2009, 44, 280-283.
(64) Filankembo, A. G., S.; Lisiecki, I.; Pileni, M. P. J. J. Phys. Chem. B 2003, 107, 7492-7500.
(65) Chen, K. X., D. CrystEngComm 2013, 15, 1739– 1746.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code