Responsive image
博碩士論文 etd-0703116-153252 詳細資訊
Title page for etd-0703116-153252
論文名稱
Title
合成多樣銀/氧化鐵奈米顆粒之石墨烯複合材料作為鹼性氧氣還原電催化劑之研究
Controlled synthesis of Ag/Fe2O3 nanocomposites on graphene as electrocatalyst for oxygen reduction reaction in alkaline media
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-27
繳交日期
Date of Submission
2016-08-06
關鍵字
Keywords
氧化鐵、二甲基甲醯胺、氧氣還原反應、石墨烯、銀奈米粒子
iron oxide, DMF, oxygen reduction reaction, graphene, silver nanoparticle
統計
Statistics
本論文已被瀏覽 5701 次,被下載 60
The thesis/dissertation has been browsed 5701 times, has been downloaded 60 times.
中文摘要
替代能源的轉換與儲存的研究中,可再生能源技術非常重要,而氧氣還原反應(Oxygen Reduction Reaction, ORR)在燃料電池中扮演了關鍵角色,Pt/C是目前最好的ORR催化劑,但Pt/C成本昂貴且穩定性差,為了降低成本與提高效率,合成可替代材料是目前研究的趨勢。
有許多研究證實,氧化鐵摻雜到碳材可以當作良好的電催化劑,不過都有動力學不良的現象,不能穩定地維持在四電子還原。在我們的研究中,有效地透過熱迴流與溶劑熱處理方式合成出催化劑。透過二甲基甲醯胺溶劑經過熱處理,具有還原效果、分散氧化石墨烯以及使C-N的ORR催化活性點含量上升,均有利於提升ORR催化活性,但是還是無法克服氧化鐵在電催化的缺陷,透過少許銀奈米粒子與氧化鐵的結合,有效提升材料的氧氣還原能力。比較不同Ag/Fe2O3的界面接觸在氧氣還原中的效果,溶劑熱處理前加硝酸銀的效果最好,Ag/ Fe2O3 /N-graphene (Ag/FNG-ST),藉著銀/氧化鐵的強交互作用提升吸附氧氣的能力而增強ORR活性。藉由協同效應的測試,我們得知Fe2O3/N-graphene (FNG)加銀奈米粒子有助於提升FNG動力學催化效果,從二步驟還原提升到一步驟四電子還原,電子轉移數趨近四電子轉移。我們發現二甲基甲醯胺溶劑可以使提升氧化鐵的結晶程度,有利於銀奈米粒子吸附在氧化鐵上,而催化活性來自小尺寸的銀奈米粒子長在氧化鐵上,改變氧化鐵的電子結構,增強吸附氧氣的能力,提升ORR催化效果。
總結來說,利用我們的方法能有效提升電催化效果,能克服氧化鐵在動力學上不良的缺點,提升為一步驟四電子還原,並使氧氣還原的催化反應偏向四電子還原,使所研究的複合材料可越趨近Pt/C催化劑。
Abstract
Research on alternative energy conversion and storage of renewable energy technologies is very important. Oxygen reduction reaction (ORR) plays a key role in the fuel cells. Pt/C remains the most efficient ORR catalysts, but the high cost and poor stability limit its wide application in fuel cell technologies. We attempt to explore cheap and effective non-noble metal electrocatalysts as the alternatives to Pt-based catalyst in ORR.
Iron oxides have sluggish electron transfer kinetics for oxygen reduction in alkaline media. In our study, we have effectively developed a two-step thermal treatment to synthesize Ag/Fe2O3/N-graphene (Ag/FNG) catalysts. Due to its decomposition at high temperatures, DMF solvent can increase the electrocatalytic performance, nitrogen doping, graphene dispersity. Although DMF solvent ensures great enhancement in ORR performance, the natures of iron oxides still limit an overall 2-electron transfer pathway. Through the addition of a few quantity of silver ion under solvothermal treatment, Ag/FNG-ST have shown the best electrocatalytic activities because of the strong interaction of Ag/Fe2O3.The synergistic effect in Ag/FNG-ST displays the lowest onset potentials, higher electron transfer number(n=~3.9), and efficient mass-transport in kinetic-diffusion control region. We found that DMF solvent will result in better crystallization of iron oxides and bonding with Ag nanoparticles, which changes the electronic structure of iron oxides. This leads to the rise of binding energy to the adsorbed oxygen, which facilitates the O-O bond splitting, and improves the catalytic activities.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
第一章、緒論 1
1.1 研究動機 2
1.2 研究背景 3
1.2.1燃料電池 3
1.2.2 氧氣還原反應 (Oxygen reduction reaction) 5
1.2.2.1 氧氣吸附模式 8
1.2.3 石墨烯及氧化石墨烯 10
1.2.4催化劑 13
1.2.4.1 Pt catalyst 13
1.2.3.2 Fe-based catalyst 15
1.2.3.3 Ag-based catalyst 17
1.2.5 催化劑設計 18
1.2.5.1 異原子(N.P.S)摻雜到石墨烯 18
1.2.5.2 過渡金屬與氮原子鍵結 19
1.2.5.3 銀奈米粒子的輔助 20
1.2.5.4 石墨烯載體 21
1.2.5.5 氧氣還原催化劑的合理設計 21
第二章、實驗樣品合成與測試方法 23
2.1 藥品 23
2.2 合成 24
2.2.1製備氧化石墨烯 (graphene oxide) 24
2.2.2製備FNG和Ag/FNG-ST複合材料 25
2.2.3 製備Ag/FNG-TR-ST,Ag/FNG-Stir 26
2.2.4 製備Ag/rGO-PDDA、Ag/rGO-CTAB和Ag/rGO-18C 27
2.3 電化學分析方法 28
2.3.1 循環伏安法 (Cyclic voltammetry, CV) 28
2.3.2旋轉盤電極 (Rotation disk electrode, RDE) 29
2.3.3旋轉環盤電極 (Rotation ring disk electrode, RRDE) 30
第三章、研究結果 31
3.1 不同溶劑對FNG的影響 31
3.1.1晶體結構與結構形態 31
3.1.2元素組成與比例 33
3.2 在DMF溶劑下合成Ag/FNG-ST 35
3.2.1晶體結構與結構形態 36
3.2.2元素組成 41
3.3 在DMF溶劑下合成Ag/FNG-TR-ST與Ag/FNG-Stir 43
3.3.1. 晶體結構與結構形態 43
3.4 複合材料的電催化活性 47
3.4.1 溶劑效應對FNG的影響 47
3.4.2 ORR的還原催化行為 48
3.4.3 摻雜銀奈米粒子對FNG的影響 49
3.4.3.1 Ag/FNG-ST的協同效應 49
3.4.3.2 Ag/FNG-ST的還原催化行為 51
3.4.3.3 Ag/FNG-ST的電子轉移數 53
3.4.3.4 比較不同Ag/Fe2O3的界面接觸在氧氣還原催化的效果 56
3.4.3.5 Ag/FNG-ST的穩定度測試 58
第四章、討論 59
4.1 溶劑對Ag/FNG-ST的影響 59
4.2不同奈米結構的銀粒子對FNG的影響 60
4.2.1 元素比例和物理性質的影響 60
4.2.2 銀奈米粒子的影響 62
4.2.2-1 控制Ag/rGO的銀奈米顆粒尺寸 65
4.2.2-2 Fe2O3在Ag/FNG-ST中的影響 67
4.2.3 銀奈米粒子的摻雜改變Fe2O3的電子結構 69
第五章、結論 71
參考文獻 72
參考文獻 References
(1) Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443.
(2) Neburchilov, V.; Wang, H.; Martin, J. J.; Qu, W. J. Power Sources 2010, 195, 1271.
(3) Wang, Y.-J.; Wilkinson, D. P.; Zhang, J. Chem. Rev. 2011, 111, 7625.
(4) Grove, W. R. Philos. Mag. J. Sci. 1839, 14, 127.
(5) Kirubakaran, A.; Jain, S.; Nema, R. K. Renew. Sust. Energy Rev. 2009, 13, 2430.
(6) Steele, B. C. H.; Heinzel, A. Nat. Mater. 2001, 414, 345.
(7) Yeager, E. J. Mol. Cata. 1986, 38, 5.
(8) Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172.
(9) Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. Angew. Chem. Int. Ed. Engl. 2014, 53, 102.
(10) Park, J.-S.; Park, S.-H.; Yim, S.-D.; Yoon, Y.-G.; Lee, W.-Y.; Kim, C.-S. J. Power Sources 2008, 178, 620.
(11) Slade, R. C. T.; Varcoe, J. R. Solid State lonics 2005, 176, 585.
(12) Wang, B. J. Power Sources 2005, 152, 1.
(13) Damjanovic, A.; Genshaw, M. A.; Bockris, J. O. M. J. Chem. Phys. 1966, 45, 4057.
(14) Wroblowa, H. S.; Pan, Y. C.; Razumney, G. J Electrochem. Soc. 1976, 125, 1103.
(15) Abbleby, A. J.; Savy, M. Electroanal. Chem. 1978, 92, 15.
(16) Taylor, R. J.; Humffray, A. A. J Electroanal Chem 1975, 64, 85.
(17) Neburchilov, V.; Wang, H. J.; Martin, J. J.; Qu, W. J. Power Sources 2010, 195, 1271.
(18) Vielstich, W.; Lamm, A.; Gasteiger, H. A. Handbook of Fuel Cells – Fundamentals, Technology and Applications; Wiley: Chichester, 2003.
(19) Christensen, P. A.; Hamnett, A.; Linares-Moya, D. Phys. Chem. Chem. Phys. 2011, 13, 5206.
(20) Zinola, C. F.; Arvia, A. J.; Estiu, G. L.; Castro, E. A. J. Phys. Chem. 1994, 98, 7566.
(21) Wang, H.; Dai, H. Chem. Soc. Rev. 2013, 42, 3088.
(22) Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491.
(23) Xu, J.; Gao, P.; Zhao, T. S. Energy Environ. Sci. 2012, 5, 5333.
(24) Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. Chem. Mater. 2010, 22, 898.
(25) Choi, C. H.; Lee, S. Y.; Park, S. H.; Woo, S. I. Appl. Catal. B. Environ. 2011, 103, 362.
(26) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 191.
(27) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 1339.
(28) Lerf, A.; He, H.; Forster, M.; Klinowski, J. J. Phys. Chem. 1988, 102, 4477−4482.
(29) Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Mater. Today 2012, 15, 564.
(30) Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. J. Phys. Chem. C 2007, 111, 404.
(31) Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Ed. 2005, 44, 2132.
(32) Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adzic, R. R. J. Phys. Chem. C 2007, 111, 404.
(33) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886.
(34) Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. ACS Catal. 2012, 2, 832.
(35) Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefevre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S.; Dodelet, J. P. Phys. Chem. Chem. Phys. 2012, 14, 11673.
(36) Zhang, C.; Hao, R.; Yin, H.; Liu, F.; Hou, Y. Nanoscale 2012, 4, 7326.
(37) Zhou, W.; Ge, L.; Chen, Z.-G.; Liang, F.; Xu, H.-Y.; Motuzas, J.; Julbe, A.; Zhu, Z. Chem. Mater. 2011, 23, 4193.
(38) Wu, Z. S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Mullen, K. J. Am. Chem. Soc. 2012, 134, 9082.
(39) Ren, S.; Ma, S.; Yang, Y.; Mao, Q.; Hao, C. Electrochim. Acta. 2015, 178, 179.
(40) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3, 546.
(41) Guo, J.; Zhou, J.; Chu, D.; Chen, R. J. Phys. Chem. C 2013, 117, 4006.
(42) Slanac, D. A.; Hardin, W. G.; Johnston, K. P.; Stevenson, K. J. J. Am. Chem. Soc. 2012, 134, 9812.
(43) Lim, E. J.; Choi, S. M.; Seo, M. H.; Kim, Y.; Lee, S.; Kim, W. B. Electrochem. Commun. 2013, 28, 100.
(44) Men, B.; Sun, Y.; Tang, Y.; Zhang, L.; Chen, Y.; Wan, P.; Pan, J. Ind. Eng. Chem. Res. 2015, 54, 7415.
(45) Agnihotri, S.; Mukherji, S.; Mukherji, S. RSC Adv. 2014, 4, 3974.
(46) Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem. Int. Ed. Engl. 2013, 52, 11755.
(47) Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. J. Am. Chem. Soc. 2013, 135, 1201.
(48) Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano. Lett., 9, 1752.
(49) Jasinski, R. Nature 1964, 201, 1212.
(50) Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. J. Appl. Electrochem. 1989, 19, 19.
(51) Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 3570.
(52) Park, S.-A.; Lim, H.; Kim, Y.-T. ACS Catal. 2015, 5, 3995.
(53) Kinoshita, K. Electrochemical oxygen technology.; John Wiley & Sons: New York, 1992.
(54) Liu, H. D.; Zhang, J. L.; Xu, D. D.; Huang, L. H.; Tan, S. Z.; Mai, W. J. J. Solid State Electrochem. 2014, 19, 135.
(55) Ma, Z.; Huang, X.; Dou, S.; Wu, J.; Wang, S. J. Phy. Chem. C 2014, 118, 17231.
(56) Zhao, B.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X.; Liu, M.; Shao, Z. ACS Appl. Mater. Interfaces 2015, 7, 14446.
(57) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10, 780.
(58) Ai, K.; Liu, Y.; Lu, L.; Cheng, X.; Huo, L. J. Mater. Chem. 2011, 21, 3365.
(59) Jokar, E.; Iraji zad, A.; Shahrokhian, S. Int. J. Hydrogen Energy 2014, 39, 21068.
(60) Sengupta, K.; Chatterjee, S.; Samanta, S.; Bandyopadhyay, S.; Dey, A. Inorg. Chem. 2013, 52, 2000.
(61) Zhao, P.; Li, W.; Wang, G.; Yu, B.; Li, X.; Bai, J.; Ren, Z. J. Alloys Compd. 2014, 604, 87.
(62) Concha, B.-N.; Eugenio, C.; Carlos, M.-G. Carbon 2013, 54, 201.
(63) Wang, H.; Xu, Z.; Yi, H.; Wei, H.; Guo, Z.; Wang, X. Nano Energy 2014, 7, 86.
(64) Liu, S.; Qin, X. RSC Adv. 2015, 5, 15627.
(65) Krishna, R.; Fernandes, D. M.; Dias, C.; Ventura, J.; Venkata Ramana, E.; Freire, C.; Titus, E. Int. J. Hydrogen Energy 2015, 40, 4996.
(66) Wang, Y.; Lu, X.; Liu, Y.; Deng, Y. Electrochem. Commun. 2013, 31, 108.
(67) El-Deab, M. S.; Sotomura, T.; Ohsaka, T. Electrochim. Acta 2006, 52, 1792.
(68) Tang, Q.; Jiang, L.; Qi, J.; Jiang, Q.; Wang, S.; Sun, G. Appl. Catal. B Environ. 2011, 104, 337.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code