Responsive image
博碩士論文 etd-0703117-105514 詳細資訊
Title page for etd-0703117-105514
論文名稱
Title
非週期性與週期性金屬狹縫陣列的光學特性
Optical properties of periodic and aperiodic metallic slit arrays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-13
繳交日期
Date of Submission
2017-08-07
關鍵字
Keywords
金屬狹縫、繞射元件、聚焦光斑、表面電漿子、環境感測、耦合模態
Environment sensing, Metallic slit arrays, Diffractive element, Focusing spot, Surface plasmon polaritons
統計
Statistics
本論文已被瀏覽 5646 次,被下載 16
The thesis/dissertation has been browsed 5646 times, has been downloaded 16 times.
中文摘要
週期性金屬狹縫和非週期金屬狹縫皆可用於設計光學繞射元件,透過材料特性與幾何結構的設計,可以實現一般傳統光學元件無法達到的特性,本研究利用二維有限元素法設計週期性和非週期性的光學繞射元件。首先,非週期性金屬狹縫主要是利用中心狹縫與兩側狹縫之繞射光的光程不同,使繞射光的相位發生延遲,透過適當設計狹縫位置,焦點處會在我們所預期的地方形成聚焦光斑。我們可透過增加狹縫數或降低焦距長度降低焦點處光斑的半高全寬,但同時也會讓景深變小。當我們的非週期性繞射元件的焦距長度為3μm時,狹縫數僅5個,元件寬度只有6.16μm且厚度僅100nm,即可達到光斑的半高全寬及景深分別為494nm及1.58μm的效果。
關於週期性繞射元件,我們利用週期性的金屬狹縫耦合的方式激發水平方向的表面電漿子模態與狹縫電漿子的耦合模態。隨著環境折射率發生變化,共振峰值將產生位移,故可作為環境感測元件。元件經過優化之後,折射率靈敏度為464nm/RIU。另外,我們也在元件上填入溫度敏感材料以應用於溫度感測,其靈敏度為-119.67nm/oC。與過去的文獻相比,我們的元件在頻譜上的峰值極窄,較容易進行峰值追蹤,量測的準確性也較佳。
Abstract
Periodic and aperiodic metallic slit arrays can be applied to design optical diffractive elements. They can provide some properties that are hard to be achieved by conventional optical elements. In this study, we design periodic and aperiodic optical diffractive elements by using a two-dimensional finite element method. We first consider aperiodic metallic slit arrays containing a central slit with other slits on both sides. By appropriately arranging positions of the slits, the phase difference for diffractive light from each slit can be well designed to form a focused spot at the expected position. We can reduce the FWHM by increasing the number of slits or decreasing the focal length. However, the DOF is decreased. By using only five slits, we can realize a device with the FWHM is only 494nm as the designed focal length is 3μm. In addition, the width and thickness of our element are only 6.16μm and 100nm, respectively.
Besides, we also design periodic metallic slit arrays to excite the surface plasmon polariton mode and slit plasmon polariton mode. They will couple with each other as their propagation constants are the same. The element can be used in sensing applications due to the resonance peak can be shifted by the variation of environmental refractive index. After optimization, the sensing sensitivity of the device is 464nm/RIU. In addition, we can infiltrate the temperature-sensitive material into our device to achieve a temperature sensitivity of -119.67nm/oC. Compared with other reports, the resonance peak of our device is much more narrower to make it easy to track the peak and enhance the measurement accuracy.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1繞射元件簡介 1
1-2表面電漿子原理 6
1-3研究動機 11
第二章 狹縫的繞射 12
2-1狹縫的繞射原理 13
2-1.1 Fresnel繞射原理(近場繞射) 14
2-1.2 Fraunhofer繞射原理(遠場繞射) 17
2-1.3 狹縫的干涉原理 18
2-2異常光學穿透現象 23
第三章 非週期性狹縫之數值分析 29
3-1繞射透鏡的重要參數解釋 29
3-2非週期狹縫透鏡 32
3-3非週期狹縫透鏡之特性分析 35
3-3.1 狹縫尺寸對元件表現的影響 36
3-3.2 狹縫數量對元件特性的影響 39
3-3.3 焦距長度對元件特性的影響 42
第四章 週期性狹縫之數值分析 46
4-1週期性金屬狹縫之感測元件 46
4-2週期性金屬狹縫之共振特性 47
4-2.1 共振模態分析 48
4-2.2 結構參數對共振點的影響 50
4-3週期性金屬狹縫的感測特性與結果 55
第五章 結論 61
參考文獻 62
參考文獻 References
[1] G. Saxby and S. Zacharovas, Practical Holography. 4th ed, Crc Taylor and Francis Group, 2015.
[2] E. Hecht, Optics. 4th ed, Addison Wesley, 1990.
[3] M. A. Golub, L. L. Doskolovich, N. L. Kazanskiy, S. I. Kharitonov, and V. A. Soifer, “Computer generated diffractive multi-focal lens,” J. Mod. Opt., vol. 39, pp. 1245-1251, 1992.
[4] Y. Zhao, S. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express, vol. 18, pp. 23458-23465, 2010.
[5] K. Goto, Y. Kim, T. Kirigaya, and Y. Masuda, “Near-field evanescent wave enhancement with nanometer-sized metal grating and micro lens array in parallel optical recording head,” Jpn. Appl. Phys., vol. 43, pp. 5814-5818, 2004.
[6] J. Park, G. Kim, H. Park, J. Joo, S. Kim, and M. Kwack, “Performance improvement in silicon arrayed waveguide grating by suppression of scattering near the boundary of a star coupler,” Appl. Phys. Lett., vol. 54, pp. 5597-5602, 2015.
[7] C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al-Au bimetallic layer,” Mod. Appl. Sci., vol. 4, pp. 8-13, 2010.
[8] G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, “Large-aperture switchable thin diffractive lens with interleaved electrode patterns,” Appl. Phys. Lett., vol. 89, pp. 141120, 2014.
[9] G. Zheng, L. Xu, M. Lai, Y. Chen, Y. Liu, and X. Li, “Broadband light absorption enhancement in thin-film silicon solar cells,” Opt. Commun., vol. 285, pp. 2755-2759, 2012.

[10] Y. Fan, H. Ren, and S. Wu, “Switchable fresnel lens using polymer-stabilized liquid crystals,” Opt. Express, vol. 11, pp. 3080-3086, 2003.
[11] D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. 1st ed, Cambridge University Press, 2007.
[12] P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Laser direct writing of volume modified Fresnel zone plates,” J. Opt. Soc. Am. B, vol. 24, pp. 2090-2096, 2007.
[13] M. Honma and T. Nose, “Liquid-crystal fresnel zone plate fabricated by microrubbing,” Jpn. J. Appl. Phys., vol. 44, pp. 287-290, 2005.
[14] F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express, vol. 18, pp. 12606-12614, 2010.
[15] J. H. Lee, J. W. Yoon, M. J. Jung, J. K. Hong, S. H. Song, and R. Magnusson, “A semiconductor metasurface with multiple functionalities: a polarizing beam splitter with simultaneous focusing ability,” Appl. Phys. Lett., vol. 104, pp. 233505, 2014.
[16] B. Hu, Q. J. Wang, and Y. Zhang, “Systematic study of the focal shift effect in planar plasmonic slit lenses,” Nano Technol., vol. 23, pp. 444002, 2012.
[17] S. Jia, X. Wang, Y. Wu, M. Xiao, P. Fan, and Z. Wang, “Active control of beams by metallic nanoslit array lens with movable dielectric substrate,” Appl. Phys. Express, vol. 8, pp. 062001, 2015.
[18] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London, vol. 18, pp. 269-275, 1902.
[19] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am., vol. 31, pp. 213-222, 1941.
[20] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating. 1st ed, Springer-Verlag, 1988.

[21] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., vol. 216, pp. 398-410, 1968.
[22] E. Keretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch, vol. 23, pp. 2135-2136, 1968.
[23] M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Proc. of SPIE., vol. 7505, pp. 750501, 2009.
[24] L. Wen, F. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett., vol. 104, pp. 151106, 2014.
[25] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photon., vol. 2, pp. 496-500, 2008.
[26] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp.824-830, 2003.
[27] A. V. Zayatsa, I. I. Smolyaninovb, and A. A. Maradudinc, “Nano-optics of surface plasmon polaritons,” Phys. Rev., vol. 408, pp. 131-314, 2005.
[28] M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express, vol. 22, pp. 12307-12315, 2014.
[29] P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. C. Smith, J. J. Klein, M. Russew, G. Grutzner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express, vol. 23, pp. 16529-16539, 2015.
[30] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, vol. 272, pp. 85-87, 1996.
[31] M. Etter and R. E. Dinnebier, A Century of Powder Diffraction: a Brief History. 1st ed, Wiley-VCH, 2014.
[32] J. W. Goodman, Introduction to Fourier Optics. 3rd ed, McGraw Hill, 1996.
[33] F. A. Jenkins and H. E. White, Fundamentals of Optics. 4th ed, McGraw Hill, 2011.
[34] E. W. March and E. Wolf, “Consistent formulation of kirchhoffs diffraction theory,” J. Opt. Soc. Am., vol. 56, pp. 1712-1722, 1966.
[35] E. Wolf and E. W. Marchand, “Comparison of the Kirchhoff and Rayleigh-Sommerfeld theories of diffraction at an aperture,” J. Opt. Soc. Am., vol. 54, pp. 587-594, 1964.
[36] H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev., vol. 66, pp. 163-182, 1944.
[37] C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep., vol. 5, pp. 321-332, 1950.
[38] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp.667-669, 1998.
[39] E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon., vol. 2, pp. 161-164, 2008.
[40] L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett., vol. 9, pp. 235-238, 2009.
[41] Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express, vol. 21, pp. 6139-6152, 2013.
[42] L. B. Yu, D. Z. Lin, Y. C. Chen, Y. C. Chang, K. T. Huang, J. W. Liaw, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B, vol. 71, pp. 041405, 2005.

[43] P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett., vol. 88, pp. 031101, 2006.
[44] H. Nasari and M. S. Abrishamian, “Electrically tunable light focusing via a plasmonic lens,” J. Opt., vol. 14, pp. 125002, 2012.
[45] F. Hao, R. Wang, and J. Wang, “Design and characterization of a micron-focusing plasmonic device,” Opt. Express, vol. 18, pp. 15741-15746, 2010.
[46] Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express, vol. 19, pp. 9434-9444, 2011.
[47] A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, vol. 20, pp. 4813-4815, 2004.
[48] K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt., vol. 12, pp. 044023, 2007.
[49] Sopra S. A. company. (1995). n, k database. Message posted to http://www.ioffe.ru/SVA/NSM/nk/
[50] E. Kang, J. Park, and B. Bae, “Effect of organic modifiers on the thermo-optic characteristics of inorganic–organic hybrid material films,” J. Mater. Res., vol. 8, pp. 1889-1894, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code