Responsive image
博碩士論文 etd-0703117-154101 詳細資訊
Title page for etd-0703117-154101
論文名稱
Title
高分子量PS-P2VP與多面體聚矽氧烷複合材料之層級形態研究與探討
Investigation of Hierarchical Assembly in High-Mw PS-b-P2VP/Polyhedral Oligomeric Silsesquioxane Complexes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-08-03
關鍵字
Keywords
多面體聚矽氧烷、自組裝、奈米團聚、SiO2 多孔材料、嵌段共聚物
Block copolymer, POSS, self-assembly, nano-aggregation, SiO2 porous
統計
Statistics
本論文已被瀏覽 5736 次,被下載 0
The thesis/dissertation has been browsed 5736 times, has been downloaded 0 times.
中文摘要
摘要
高分子混摻技術可以有效且且多樣化地調控高分子材料之性質。實驗中,利用高分子量PS-P2VP嵌段共聚物與各種高分子添加物如馬來酸異丁基多面體聚矽氧烷(MA-POSS)、具有八個馬來酸官能基之多面體聚矽氧烷(OMA-POSS)、八個苯酚官能基之多面體聚矽氧烷(OP-POSS)及具有八個聚乙二醇之官能基之多面體寡聚倍半矽氧烷(PEG-POSS)來進行混摻。透過傅立葉轉換紅外線光譜儀(FTIR)驗證P2VP鏈段與添加物(MA-POSS、OMA-POSS、OP-POSS)間之氫鍵作用力。由TEM影像中得知,PS-P2VP/MA-POSS 在氯仿系統中,不同混摻之重量比例,其自組裝之結構從原始的雙連續相結構轉至柱狀結構。有趣的是,混摻比例10-30wt%中發現MA-POSS在P2VP中藉由奈米團聚的現象形成一個特殊的層板結構。在PS-P2VP/OMA-POSS系統中,混摻比例達10wt%,其相分離結構由層板轉變成雙連續相結構。隨著混摻比例增加,系統中具有很強的氫鍵作用力,導致其形態相轉成球狀結構。在PS-P2VP/OP-POSS系統中,混摻比例達20wt%時,型態依然為層板結構,繼續增加其混摻比例(30wt%至50wt%),其形態從柱狀轉為球狀,值得注意的是,過量的OP-POSS(60-70wt%)會跑至PS相中使形態轉回至柱狀結構。在PS-P2VP/PEG-POSS系統中,低混摻比例(10-30wt%)為一個無序結構,隨著混摻比例增加(40-70wt%)形成一個有序的柱狀結構。在薄膜系統中,由於自組裝的時間不夠,在PS-P2VP/MA-POSS與PS-P2VP/PEG-POSS系統中所得到之薄膜相分離型態均為連續網絡結構。有趣的是,擁有網絡結構之薄膜(10wt%)在乙醇蒸發後分別於波長540與649nm表現出光子晶體現象,這是固態薄膜之可調控光子能隙,透過溶劑的膨潤控制高分子三維結構之彈性收縮。同時,在高混摻比例的PS-P2VP/OMA-POSS(50-70wt%)可藉由交聯並高溫裂解形成SiO2多孔材料。因此,可藉由PS-P2VP/POSS快速地一步製成無機的多孔材料。
關鍵字:嵌段共聚物、多面體聚矽氧烷、自組裝、奈米團聚、SiO2多孔材料。
Abstract
Technique of polymer blend is critical to efficiently and diversely alter properties of polymeric materials. Here, high-molecular-weight polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) block copolymers blended were conducted with various kinds of additives including maleamic acid-isobutyl polyhedral oligomeric silsesquioxanes (MA-POSS), octa-maleamic acid POSS (OMA-POSS), octa-functionalized phenol POSS (OP-POSS), and poly(ethylene glycol)-POSS (PEG-POSS). Phase transitions from gyroid to lamellae and cylinder could be observed in the as-cast PS-P2VP/MA-POSS from chloroform. Interestingly, with the increased weight fraction of the MA-POSS from 10 to 30wt%, novel lamellar nano-aggregations of the MA-POSS were observed within the P2VP microdomain. In the PS-P2VP/OMA-POSS, a phase transition from lamellae to gyroid is found as the weight fraction of OMA-POSS is 10wt%. With the continuous increase of the weight fractions of OMA-POSS, the microstructures all revealed spheres due to the strong hydrogen bonding interaction. Regarding the PS-P2VP/OP-POSS complexes, the lamellar morphologies maintained unchanged when the weight fractions of OP-POSS are 10 and 20wt%. With further increasing the weight fractions to 30~50wt%, the lamellar morphology transferred to the hexagonally-packed cylinders and finally to spheres. Notably, while the weight fractions of the OP-POSS are 60 and 70 wt%, the morphologies transfer back to cylinder due to the solubilization of the excess OP-POSS into the PS microdomain. In PS-P2VP/PEG-POSS, we observed disorder structures as the weight fraction of PEG-POSS is low (10~30 wt%). As the blended PEG-POSS reaches 40 to 70wt%, the morphologies transferred to the microphase-separated cylinder. Regarding thin-film state, the PS-P2VP/MA-POSS and PS-P2VP/PEG-POSS thin films exhibit the co-continuous network microstructures. Most interestingly, these network-structured thin films exhibit the specific trapping of structural coloration (TOSC) at 540 and 649 nm, respectively, after the immersion in ethanol and followed completer evaporation. This is due to the vitrificatoin of the elastic conformation of the P2VP chains at a particular moment via solvent evaporation in a three-dimensional network microstructure. Also, the PS-P2VP/OMA-POSS having large weight fractions of POSS (50~70wt%) were able to give inorganic porous templates after preliminary cross-link treatment and followed calcination. As a result, inorganic nanoporous netwroks can be achieved by one-step process using the PS-P2VP/POSS complexes, providing a facile means for fabricating inorganic nanoporous templates.
目次 Table of Contents
Contents
論文審定書 ..................................................................................................................... i
誌謝 .................................................................................................................................. ii
摘要 ................................................................................................................................. iii
Abstract .......................................................................................................................... iv
Contents ........................................................................................................................... v
List of Figures .............................................................................................................. viii
List of Tables ................................................................................................................ xvi
Chapter 1. Introduction ................................................................................................. 1
1.1 Block Copolymer (BCP) Self-assembly ............................................................. 1
1.2 PVP-Based BCPs ................................................................................................ 3
1.3 Photonic Crystals ................................................................................................ 5
1.3.1 Fabrication of Photonic Crystals from BCP self-assembly ..................... 7
1.3.2 Stimuli-Responded BCP Photonic Crystals .......................................... 11
1.4 Polyhedral Oligomeric Silsesquioxanes (POSS) .............................................. 14
1.4.1 Blending of BCPs and POSS nanoparticles via hydrogen bonding ...... 15
1.4.2 Robust Porous Templates from POSS-Containing BCPs ..................... 16
1.4.3 Rapidly Fabricated Nanoporous Silica Films via POSS hybrids .......... 17
1.4.4 Photonic Template from POSS Nanocomposites .................................. 19
vi
Chapter 2. Objectives ................................................................................................... 23
Chapter 3. Materials and Experimental Methods ..................................................... 24
3.1 Materials ........................................................................................................... 24
3.2 Sample Preparation ........................................................................................... 25
3.2.1 Bulks Samples Preparation .................................................................... 25
3.2.2 Thin Film Samples Preparation ............................................................. 26
3.3 Microstructural Characterization ...................................................................... 26
3.3.1 Transmission Electron Microscopy (TEM) ........................................... 26 3.3.2 Field-Emission Scanning Electron Microscopy (SEM) ........................ 27
3.3.3 Fourier Transform Infrared (FTIR) Spectroscopy ................................. 27
3.3.4 Ultraviolet–Visible Absorption Spectroscopy ....................................... 27
3.3.5 Small Angle X-ray Scattering (SAXS) .................................................. 28
3.3.6 X-ray photoelectron spectroscopy (XPS) .............................................. 28
3.3.7 Electron dispersive X-ray spectroscopy (EDS) ..................................... 28
Chapter 4. Results and Discussion .............................................................................. 29
4.1 Characterization of High-Mw PS-P2VP BCP .................................................. 29
4.1.1 Microphase Separation of High-Mw PS-P2VP in Bulk ........................ 29
4.1.2 Microphase Separation of PS-P2VP BCP in Thin Film ........................ 31
4.2 Phase Behaviors of PS-P2VP/Additive Hybrids .............................................. 34
vii
4.2.1 Microphase Separation of PS-P2VP/MA-POSS (Maleamic Acid-Isobutyl POSS) in Bulk ................................................................................................ 34
4.2.2 Microphase Separation of PS-P2VP/OMA-POSS (Octa-Maleamic Acid POSS) in Bulk ................................................................................................ 43
4.2.3 Microphase Separation of PS-P2VP/OP-POSS (Octa-functionalized phenol POSS) in Bulk .................................................................................... 49
4.2.4 Microphase Separation of PS-P2VP/PEG-POSS (polyethylene glycol POSS) in Bulk ................................................................................................ 56
4.3 Optical Properties of the PS-P2VP/Additives Films ........................................ 62
4.3.1 Optical Properties of the PS-P2VP/PEG-POSS Films .......................... 62
4.3.2 Optical Properties of the PS-P2VP/MA-POSS Films ........................... 63
4.4 Robust Porous Templates from PS-P2VP/OMA-POSS ................................... 65
Chapter 5. Conclusion .................................................................................................. 69
Chapter 6. References .................................................................................................. 71
參考文獻 References
Chapter 6. References
1. Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
2. Braun, P. V.; Wiltzius, P. Nature 1999, 402,603.
3. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
4. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
5. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
6. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
7. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
8. Kuo, S. W.; Wu, C. H.; Chang, F. C. Macromolecules 2004, 37, 192.
9. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M. Adv. Mater.1995, 7, 1000.
10. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T. Langmuir 1999, 15, 5200.
11. Hashimoto, T.; Harada, M.; Sakamoto, N. Macromolecules 1999, 32, 6867.
12. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Langmuir 2000, 16, 6913.
13. Amalvy, J. I.; Percy, M. J.; Armes, S.P.; Wiese, H. Langmuir 2001, 17, 4770.
14. Cho, G.; Jang, J.; Jung, S.; Moon, I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A. Langmuir 2002, 18, 3430.
72
15. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K. Chem. Mater.1999, 11, 2372.
16. Moffitt, M.; Eisenberg, A. Chem. Mater.1995, 7, 1178.
17. Zhao, H.; Douglas, E. P. Chem. Mater.2002, 14, 1418.
18. Zhao, H. Y.; Douglas, e. P.; Harrison, B. S.; Schanze, K. S. Langmuir, 2001, 17, 8428.
19. Prum, R. O.; Quinn, T.; Torres, R.H. J Exp Biol. 2006, 209, 748.
20. Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
21. Iohn, S. Phys. Rev. Lett. 1987, 58, 2486.
22. Vlasov, Y A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Nature, 2005, 438, 65.
23. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature, 2004, 431, 826.
24. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Optics Letters, 1991, 21, 1547.
25. T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature, 1996, 383, 699.
26. Busch, K.; John, S. Phys. Rev. Lett.1999, 83, 967.
27. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
28. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.;
73
Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
29. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
30. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett. 2003, 82, 3593.
31. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O. Nat. Mater. 2004, 3, 872.
32. Lawrence, J. R.; Shim, G H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
33. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179. 34. Takeoka, Y. J. Mater. Chem. 2012, 22, 23299.
35. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature, 1988, 334, 598.
36. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature, 2004, 429, 538.
37. Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
38. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. polymer, 2003, 44, 6549.
39. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
74
40. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
41. Guizhi Li, Lichang Wang, Hanli Ni, and Charles U. Pittman Jr. Journal of Inorganic and Organometallic Polymers, 2011, 11, 123.
42. Shiao-Wei Kuo, Feng-Chih Chang. Progress in Polymer Science, 2011, 36, 1649.
43. S. G. Jang, E. J. Kramer and C. J. Hawker, J. Am. Chem. Soc., 2011, 133, 16986.
44. Y. Lin, V. K. Daga, E. R. Anderson, S. P. Gido and J. J. Watkins, J. Am. Chem. Soc., 2011, 133, 6513.
45. V. K. Daga, E. R. Anderson, S. P. Gido and J. J. Watkins, Macromolecules, 2011, 44, 6793.
46. A. Noro, K. Higuchi, Y. Sageshima and Y. Matsushita, Macromolecules, 2012, 45, 8013.
47. Yi-Syuan Lu, Chia-Yu Yu, Yung-Chih Lin and Shiao-Wei Kuo, Soft Matter, 2016, 12, 2288.
48. J. Y. Cheng, C. A. Ross, V. Z.-H. Chan, E. L. Thomas, R. G. H. Lammertink, G. J. Vancso, Adv. Mater. 2001, 13, 1174.
49. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, Science, 1997, 276, 1401.
50. F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
75
51. F. S. Bates, G. H. Fredrickson, Phys. Today, 1999, 52, 32.
52. T. Hashimoto, M. Shibayama, H. Kawai, Macromolecules, 1980, 13, 1237.
53. T. Hirai, M. Leolukman, T. Hayakawa, M. Kakimoto, P. Gopalan, Macromolecules, 2008, 41, 4558.
54. J.-B. Kim, R. Ganesan, J.-H. Choi, H.-J. Yun, Y.-G. Kwon, K.-S. Kim, T.-H. Oh, J. Mater. Chem. 2006, 16, 3448.
55. J. Pyun, K. Matyjaszewski, J. Wu, G.-M. Kim, S. B. Chun, P. T. Mather, Polymer, 2003, 44, 2739.
56. E. Tegou, V. Bellas, E. Gogolides, P. Argitis, D. Eon, G. Cartry, C. Cardinaud, Chem. Mater. 2004, 16, 2567.
57. T. Hayakawa, M. Seino, R. Goseki, T. Hirai, R. Kikuchi, M. Kakimoto, M. Tokita, H. Yokoyama, S. Horiuchi, Polym. J. 2006, 38, 567.
58. By Tomoyasu Hirai, Melvina Leolukman, Chi Chun Liu, Eungnak Han, Yun Jun Kim, Yoshihito Ishida, Teruaki Hayakawa, Masa-aki Kakimoto, Paul F. Nealey, and Padma Gopalan, Adv. Mater. 2009, 21, 4334.
59. Moon, J. H.; Seo, J. S.; Xu, Y. G.; Yang, S. J. Mater. Chem. 2009,19,4687.
60. Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Thermochim. Acta. 2006, 440, 36.
61. Mabry, J. M.; Vij, A.; Iacono, S. T.; Viers, B. D. Angew. Chem., Int. Ed. 2008,
76
47, 4137.
62. Dong-Po Song, Aditi Naik, Shengkai Li, Alexander Ribbe, and James J. Watkins, J. Am. Chem. Soc. 2016, 138, 13473.
63. Tegou, E.; Bellas, V.; Gogolides, E.; Argitis, P.; Eon, D.; Cartry, G.; Cardinaud, Chem. Mater. 2004, 16, 2567.
64. Jun, Y.; Nagpal, P.; Norris, D. J. Adv. Mater. 2008, 20, 606.
65. George, M. C.; Nelson, E. C.; Rogers, J. A.; Braun, P. V. Angew. Chem., Int. Ed. 2009, 48, 144.
66. Mateˇ jeka, L.; Strachota, A.; Plesˇtil, J.; Whelan, P.; Steinhart, M.;Sˇlouf, M. Macromolecules, 2004, 37, 9449.
67. Yongan Xu, Xuelian Zhu, and Shu Yang. ACS Nano, 2009, 3, 3251.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.127.141
論文開放下載的時間是 校外不公開

Your IP address is 18.218.127.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code