Responsive image
博碩士論文 etd-0703117-155649 詳細資訊
Title page for etd-0703117-155649
論文名稱
Title
具光照分解性質之新穎雙極性嵌段共聚物PMMA-P2VP之自組裝研究
Self-Assembly of Novel Photodegradable Double Hydrophilic Block Copolymer Poly(methyl methacrylate)-b-Poly(2-vinyl pyridine)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-08-07
關鍵字
Keywords
交聯、PMMA-P2VP、光裂解、嵌段共聚物、自組裝、液晶
PMMA-P2VP, Cross-link, Photodegradable, Liquid Crystalline, Block copolymer, Self-Assembly
統計
Statistics
本論文已被瀏覽 5738 次,被下載 0
The thesis/dissertation has been browsed 5738 times, has been downloaded 0 times.
中文摘要
雙嵌段共聚物由於各段體積分率的差異,可自組裝形成不同有序結構。在這裡,我們研究兩段皆親水的大分子量PMMA170-P2VP於塊材以及薄膜態的型態研究,其中MMA的部分在塊材與薄膜態以不同溶劑配置皆具有可裂解的特性。雙嵌段共聚物PMMA-P2VP若以甲苯或苯來配置,分別會形成球狀或柱狀結構。若進一步使用中性溶劑,例如氯仿、四氫呋喃(THF)、三氯乙烷(TCE)、二氯乙烷(DCE)、鄰二氯苯(DCB),則會形成層板狀結構。此外,PMMA-P2VP的薄膜態若以丙二醇甲基醚醋酸酯(PGMEA)或苯來配置,則會形成球狀微結構。若以氯仿、四氫呋喃、三氯乙烷、二氯乙烷、鄰二氯苯可能由於自組裝的時間不夠久,而形成無序型結構。很有趣的地方是,若將PMMA-P2VP進行季氨化反應,會讓無序結構的薄膜具有無序型光子晶體,反射的可見光光譜波長位置為392 nm。為了增加型態多樣性,我們混參液晶和純P2VP高分子到PMMA-P2VP系統當中,得到了少見的Gyroid結構。若以UV光來對PMMA部分作光裂解,則會得到P2VP的多孔模板,可做未來應用。
Abstract
Block copolymers (BCPs) can self-assemble into different order microstructures depending on the effective volume fraction of the each component. Here, we first investigated the self-assembled morphologies of the high-molecular-weight (high-Mw) Polymethylmethacrylate-Poly(2-vinylpyridine) (PMMA-P2VP) consisting of degradable PMMA block in bulk and thin-film states prepared from various solvents. The as-cast PMMA-P2VP BCPs from toluene and benzene show spherical and cylindrical microstructures, respectively. With utilizing neutral solvents for casting such as chloroform, tetrahydrofuran (THF), 1,1,2-trichloroethane (TCE) and dichloroethane (DCE), lamellar microstructures are obtained. In addition, the as-cast PMMA-P2VP thin films from propylene glycol monomethyl ether acetate (PGMEA) and benzene reveal spherical microstructures. Disorder morphologies are observed in the thin films spin-casting from neutral chloroform, THF, TCE, 1,2-dichlorobenzene and DCE, due to insufficient time for self-assembly. Interestingly, the network morphology of the PMMA-P2VP thin film after solvent annealing is able to exhibit visible and angle-independent reflectance at 392 nm, namely, amorphous photonic crystal. To enrich the self-assembled microstructures, P2VP homopolymer or liquid crystal were furthermore added into the PMMA-P2VP. Morphological transitions and resultant unique gyroid microstructures can thus be fabricated. Taking advantage of the photodegradable PMMA block by UV irradiation allows us to generate nanoporous hydrophilic P2VP templates for potential applications in absorption and nanoreactor fields
目次 Table of Contents
Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figures ix
List of Tables xx
Chapter 1. Introduction 1
1.1 Self-Assembly 1
1.2 Block Copolymer (BCP) Self-assembly 3
1.3 Controlled Orientation of BCP Microphase Separation 6
1.3.1 Substrate-induced Orientation 6
1.3.2 Solvent Evaporation-induced Orientation 7
1.4 Nanoporous Template from PS-PMMA BCPs 8
1.5 Application of PS-b-PMMA 13
1.5.1 Filtration of Viruses 13
1.5.2 Shallow-Trench Array Capacitor 17
1.6 Patten Transfer with PS-PMMA Templates 20
1.6.1 Nanoparticle Arrays on Nanopatterns 20
1.6.2 Nanowire in BCP Templates 22
1.7 Application of PS-P2VP 24
1.7.1 Simple Sugar Sensing 24
1.7.2 Electro Chemically Tunable BCP Full Color Pixels 27
1.7.3 Ions Sensing 32
1.7.4 Broad-Wavelength-Range Chemically Tunable BCP Photonic Gels 33
1.7.5 Liquid Crystal Ordering Helps Self-Assembly of Block Copolymer 37
1.7.6 Characteristic of MoS2 39
1.7.7 P2VP Incorporated with MoS2 41
Figure 1-25. Overview of the synthetic process for block copolymer templated molybdenum disulfide nanowire arrays. 79 41
Chaper 2. Objectives 42
Chapter 3. Materials and Experimental Methods 44
3.1 Materials 44
Table 3-1. Characterization of PMMA-P2VP BCPs 44
3.2 Sample Preparation 44
3.2.1 Sample in Bulk State 44
3.2.2 Sample in Thin Film State 45
3.2.3 PMMA-P2VP/P2VP Polymer Blending System 45
3.2.4 PMMA-P2VP/CholHS Polymer Blending System 45
3.2.5 Photodegradation of PMMA-P2VP 46
3.3 Microstructural Characterization 46
3.3.1Transmission Electron Microscopy (TEM) 46
3.3.2 Scanning Electron Microscopy (SEM) 47
3.3.3 Ultra-small Angle X-ray Scattering (USAXS) 47
3.3.4 Ultraviolet–Visible Absorption Spectroscopy 47
3.3.5 Fourier Transform Infrared (FTIR) Spectroscopy 48
Chapter 4. Results & Discussion 49
4.1 Self-Assembly of High-Mw PMMA-P2VP BCPs in Bulk 49
4.2 As-Spun Morphologies of High-Mw PMMA-P2VP Thin Films 55
4.3 Thin-Film Morphologies after Thermo-Solvent Annealing 61
4.4 Quaternized Thin-Film Morphologies 63
4.5 PMMA-P2VP blend with homopolymer 64
4.6 Ordered Microstructures in PMMA170-P2VP160/CholHS Complexes 66
4.7 Hydrogen bonding interaction by FTIR analysis 72
4.8 Photodegradation of PMMA-P2VP(CholHS) 73
4.9 Crosslinked PMMA-P2VP(CholHS) BCP 75
Chapter 5. Conclusion 77
Chapter 6. References 78
參考文獻 References
Chapter 6. References
1. Lehn, J. M. Supramolecular chemistry: receptors, catalysts, and carriers. Science 1985, 227, 849.
2. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
3. Lehn, J.-M. Supramolecular Chemistry. Concepts and Perspectives (VCH, Weinheim, 1995)..
4. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
5. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc.2001, 123, 7677.
6. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett.1990, 65, 3013.
7. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
8. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
9. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
10. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
11. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
12. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 76410.
13. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
14. Fukunaga, K.; Elbs, H.; Magerle, R.;Krausch, G. Macromolecules, 2000,33,947.
15. Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 255, 538.
16. Albalak, R. J.;Thomas, E.L.; J.Polym. Sci. Part B Polymer. Phys. 1993, 32, 37.
17. Morkved, T.L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russel, T. P. Science 1996, 273,931
18. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Gaurini, K.; Black, C.T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
19. Mansky, P.; Lu, Y.; Huang, E.; Russel, T.P.; Hawker, C. Science 1997, 275, 1458.
20. Huang, E.; Rockford L.; Russel, T. P.; Hawker, C. J. Nature 1998, 395, 757.20
21. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952
22. Rockford, L.; Liu, Y.; Mansky, P.; Russel, T. P. Phys. Rev. Lett. 1999, 82, 2602.
23. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
24. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
25. Cheng J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
26. Ham, S.; Shin C.; Kim E.; Ryu D. Y.; Jeong U.; Russel T. P.; Hawker C. J. Macromolecules 2008, 41, 6431.
27. Martin, T. M.; Young.; D. M. Polymer 2003, 44, 4747.
28. Kim, S. H.; Misener, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
29. Matsen M. W. Curr. Opin. Colloid Interface Sci. 1998, 3, 40.
30. Russell T. P. Curr. Opin. Colloid Interface Sci. 1996, 1, 107.
31. Park M.; Harrison C.; Chaikin P. M.; Register R. A.; Adamson D. H.; Science 1997, 276, 5317.
32. Mansky P.; Chaikin P.; M., Thomas E. L.; Mater J.. Sci. 1995, 30, 1987.
33. Reiser A.; Photoreactive Polymers, The Science and Technology of Resists, Wiley, New York 1989
34. Bates F. S. and Frederickson G. H., Phys. Today 1999, 52, 32
35. Urase, T., Yamamoto, K., and Ohgaki, S. Water Sci. Technol 1994, 30, 199
36. Yang, S.Y., Ryu, I., Kim, H.Y., Kim, J.K., Jang, S.K., and Russell, T.P. Adv. Mater. 2006, 18, 709
37. Urase, T., Yamamoto, K., and Ohgaki,S. J. Membr. Sci. 1996, 115, 21
38. Rossmann, M.G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 1985, 317, 145
39. Jeong, U., Ryu, D.Y., Kim, J.K., Kim, D.H., Russell, T.P., and Hawker, C.J. Adv. Mater 2003., 15, 1247
40. Black, C.T., Guarini, K.W., Milkove, K.R., Baker, S.M., Russell, T.P., and Tuominen,. Appl. Phys M.T. 2001 Lett., 79, 409
41. Black, C.T., Guarini, K.W., Zhang, Y., Kim, H.J., Benedict, J., Sikorski, E., Babich, I.V., and Milkove, K.R. IEEE Electron Device Lett 2004, 25, 622
42. Guarini, K.W., Black, C.T., Zhang, Y., Kim, H., Sikorski, E.M., and Babich, I.V. J. Vac. Sci. Technol. B 2002 , 20, 2788
43. Kim, H., Kellock, A.J., and Rossnagel, S.M. J. Appl. Phys. 2002, 92, 7080
44. Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander. Chem. Rev.
2011, 111, 3913
45. Grieve, K.; Mulvaney, P.; Grieser, F. Curr. Opin. Colloid Interface Sci. 2000, 5, 168
46. Goya, G. F.; Berquo, T. S.; Fonseca, F. C.; Morales, M. P. J. Appl. Phys. 2003, 94, 3520
47. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem., Int. Ed. 2009, 48, 60
48. Amundson, K. and Helfand, E. Macromolecules 1993, 26, 1324
49. Amundson, K., Helfand, E., Quan, X., and Smith, S.D. Alignment kinetics. Macromolecules 1994, 26, 2698
50. Amundson, K., Helfand, E., Quan, X.N., Hudson, S.D., and Smith,
S.D. Mechanisms of alignment. Macromolecules, 1994 27, 6559
51. Tsori, Y. and Andelman, D. Macromolecules, 2002 35, 5161
52. Amundson, K., Helfand, E., Davis, D.D., Quan, X., Patel, S.S., and Smith, S.D. Macromolecules 1991, 24, 6546
53. Morkved, T.L., Lu, M., Urbas, A.M., Ehrichs, E.E., Jaeger, H.M., Mansky, P., and Russell, T.P. . Science 1996, 273, 931
54. Thurn-Albrecht, T., Steiner, R., DeRouchey, J., Stafford, C.M., Huang, E., Bal, M., Tuominen, M.T., Hawker, C.J., and Russell, T.P. Adv. Mater 2000, 12, 787
55. Thurn-Albrecht, T., DeRouchey, J., and Russell, T.P. Macromolecules 2000, 33, 3250
56. Xu, T., Hawker, C.J., and Russell, T.P. Macromolecules 2005, 38, 2802
57. Holtz J. H. , Asher S. A. ,Nature 1997 ,389 , 829
58. Holtz J. H , Holtz J. S, Munro C. H , Asher S. A, Anal. Chem. 1998 ,70 , 780
59. Ayyub O. B , Ibrahim M. B, Briber R. M, Kofinas P, Biosens. Bioelectron 2013 ,46, 124
60. Asher S. A, Alexeev V. L, Goponenko A. V, Sharma A. C, Lednev I. K, Wilcox C. S, Finegold D. N, J. Am. Chem. Soc.2003 , 125 , 3322 .
61. Alexeev V. L , Das S, Finegold D. N , Asher S. A., Clin. Chem.2004 ,50 , 2353 .
62. Alexeev V. L, Sharma A. C, Goponenko A. V, Das S, Lednev I. K,
Wilcox C. S, Finegold D. N, Asher S. A, Anal. Chem. 2003 ,75 , 2316
63. Ben-Moshe M, Alexeev V. L, Asher S. A, Anal. Chem. 2006 ,78 ,5149 .
64. Yang X. P, Pan X. H, Blyth J, Lowe C. R, Biosens. Bioelectron.2008, 23 , 899
65. Kim S, Mitropoulos A. N, Spitzberg J. D, Tao H, Kaplan D. L, Omenetto F. G, Nat. Photonics 2012 ,6 , 817 .
66. Lim H. S, Lee J.-H, Walish J. J, Thomas E. L, ACS Nano 2012 ,6 ,8933
67. Kramer R. M., Crookes-Goodson W. J., Naik R. R., Nat. Mater. 2007, 6, 533.
68. Crookes W., Ding L. L., Huang Q. H., Kimbell J. R., Horwitz J., McFall-Ngai M. J., Science 2004, 303, 235
69. Weissman J. M., Sunkara H. B., Tse A. S., Asher S. A., Science 1996, 274, 959.
70. Schrenk W. J., Shrum W. E., Wheatley J. A., US Patent 4937134, 1990
71. Xia J., Ying Y., Foulger S., Adv. Mater. 2005, 17, 2463
72. Norton J., Han M. G., Jiang P., Creager S., S Foulger. H., J. Mater. Chem. 2007, 17,1149
73. Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Science 1996,274, 95
74. Holtz, J. H. & Asher, S. A. Nature 1997,389, 829
75. Lin V.Y., Motesharei K., Dancil K.S., Sailor M. J., Ghadiri M. R., Science 1997 278, 840
76. Li1Y. Y., Cunin1 F., Link1 J. R., Gao1 T., Betts1 R. E., Reiver1 S. H., Chin V., Bhatia S. N., Sailor M. J., Science 2003, 299, 2045
77. Yu H., Kobayashi T., Yang ., Adv. Mater. 2011, 23, 3337.
78. Radisavljevic1. B, Radenovic. A., Brivio1J., Giacometti1 V. and Kis A., Nat Nanotechnol. 2011, 3, 147.
79. Wei W., Samad L., Choi J. W., Joo Y., Way A., Arnold M. S., Jin S., and Gopalan P., Chem. Mater. 2016, 11, 4017.
80. Soininen A. J., Tanionou I., Brummelhuis T.N., Schlaad H., Hadjichristidis N., Ikkala O., Raula J., Mezzenga R., and Ruokolainen J., Macromolecules. 2012, 45, 7091.
81. Zhang G., Tang S., Li A., and Zhu L., Langmuir. 2017, 25, 6353.
82. Onses M. S., Wan L., Liu X., Kiremitler N. B., Yılmaz H., and Nealey P. F., ACS Macro Lett. 2015, 12, 1356.
83. Ayyub O. B. , Ibrahim M. B. , Briber R. M. , Kofinas P., Biosens. Bioelectron.2011, 28 , 349
84. Walish J. J., Kang Y., Mickiewicz R. A., Thomas E. L., Adv. Mater. 2009, 21, 3078.
85. Kang Y., Walish J. J., Gorishnyy T. AND Thomas E. L. Nat. Mater. 2007, 6, 957.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.80.131.164
論文開放下載的時間是 校外不公開

Your IP address is 3.80.131.164
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code