Responsive image
博碩士論文 etd-0703117-160059 詳細資訊
Title page for etd-0703117-160059
論文名稱
Title
高分子嵌段共聚合物光子晶體於主動式色彩改變及高靈敏度介面活性劑檢測之研究
Active Colour Change and Highly-Sensitive Surfactant Detection Using Amphiphilic Block Copolymer Photonic Crystal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-08-07
關鍵字
Keywords
季銨化、層板結構、電致變色、介面活性劑、檢測器、光子晶體、雙嵌段共聚合物
sensor, surfactant, quaternize, electrochromic, lamellar, photonic crystal, Block copolymer
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
摘要
高分子雙嵌段共聚合物聚苯乙烯-共-2-乙烯基吡啶 (PS-b-P2VP)所製成具有層板結構的光子晶體薄膜,透過電壓調控化學環境影響薄膜的結構,進而改變薄膜反射出來的可見光波長,可以設計成一個電致變色的裝置。透過控制溶劑退火的條件,在導電玻璃上得到大範圍規則排列且與基材平行的PS-b-P2VP層板結構,再利用季銨化修飾雙嵌段共聚合物的P2VP鏈段,增加層板結構對化學環境的響應,接著放上一個墊片分離上下電極,並注入電解液,便完成電致變色的裝置。其中三點為主要影響反色波長變化的因素,分別為季銨化化學改質薄膜的程度、施加正或負電壓以及施加電壓的強度。控制薄膜被季銨化的程度可以調控在電解液中初始的可見光波長,被季銨化程度越高的薄膜,在電解液中所呈現出來的顏色越往高波長移動;施加正或負電壓會改變電解液對薄膜的影響 ,施加正電壓會使薄膜的P2VP鏈段被電解液質子化,並被膨潤使顏色往高波長紅移,施加負電壓反而使薄膜的P2VP鏈段被電解液去質子化,並收縮使顏色往短波長藍移;施加電壓的強度影響波長的變化幅度。此外,透過利用銅網當作遮罩,並且照紫外光(254nm)交聯住被紫外光照到的部分薄膜,被光罩遮住的地方不會被交聯,且保有電致變色的效果,利用此方式可以在光子晶體上製程微米等級的圖形。電致變色的研究過程中,幸運地發現此光子晶體薄膜額外有陰離子介面活性劑感測器的應用,透過肉眼觀察光子晶體顏色的變化,得知溶液中的十二甲基磺酸鈉(SDS)的含量。此光子晶體薄膜的靈敏度相較於先前的文獻有兩到三個數量級的提升。
Abstract
Abstract
Electrochemically-controlled active colour change of the thin-film photonic crystal is carried out in the lamella-structured poly (styrene-block-2-vinylpyridine) (PS-P2VP) block copolymer. With solvent annealing technique, long-range-order and highly-aligned lamellar microstructures with the lamellar normal perpendicular to the substrate were successfully prepared in the quaternized PS-P2VP thin film. We found that the electrochromic response is strongly dependent on the degree of the quaternization of the P2VP chain, the applied potential and positive or negative voltage. Because of the enhanced polar interaction by quaternization reaction, the highly-quaternized P2VP chains could lead to longer-wavelength reflectance of the PS-b-QP2VP thin film in the electrolyte. The larger applied positive voltage on the thin film side could result in significant red-shifting reflectance due to the swelling and expansion of the layered QP2VP microdomain, whereas the larger applied negative voltage (absolute value) on the thin film side could give rise to inversely blue-shifting reflectance due to the deswelling and contraction of the QP2VP microdomain. In addition, this electrochromism can be also observed in the PS-b-QP2VP thin film having a well-defined patterned texture generated by a mask irradiated by ultraviolet light. More interestingly, a specific highly-sensitive detection to a surfactant of sodium dodecyl sulfate (SDS) is found using the PS-b-QP2VP photonic crystal thin film. With different degree of the anion exchange with the Br- on the QP2VP chain, blue- and red-shifting structural coloration by the QP2VP layers in the extremely low and high SDS concentration can be directly observed by naked eyes, respectively. As compared to the previous report, the minimum sensitivity for SDS concentration has a great progress at least one order by using this PS-b-QP2VP photonic crystal as a photonic detector.
目次 Table of Contents
Contents
論文審定書 ....................................................................................................................... i
誌謝 .................................................................................................................................. ii
摘要 ................................................................................................................................. iii
Abstract .......................................................................................................................... iv
Contents ........................................................................................................................... v
List of Figures ............................................................................................................... vii
List of Tables ................................................................................................................ xvi
Chapter 1. Introduction 1
1.1 Block Copolymer (BCP) Self-assembly 1
1.2 Photonic Crystals 3
1.2.1 Fabrication of Photonic Crystals from BCP self-assembly 6
1.2.2 Stimuli-Responded BCP Photonic Crystals 9
1.3 Control of Optical Reflectivity of BCP Photonic Crystals 12
1.4 Applications of Photonic crystal 16
1.4.1 Electro Chemically Tunable BCP Full Color Pixels 16
1.4.2 Ions Sensing 21
1.4.3 Broad-Wavelength-Range Chemically Tunable BCP Photonic Gels 22
1.4.4 Photonic Crystal Surfactant Detection 26
Chapter 2. Objectives 29
Chapter 3. Materials and Experimental Methods 30
3.1 Materials 30
3.2 Sample Preparation 30
3.2.1 Bulks Samples Preparation 30
3.2.2 Thin Film Samples Preparation 31
3.3 Microstructural Characterization 31
3.3.1 Transmission Electron Microscopy (TEM) 31
3.3.2 Ultra-small Angle X-ray Scattering (USAXS) 32
3.3.3 Fourier Transform Infrared (FTIR) Spectroscopy 32
3.3.4 Ultraviolet–Visible Absorption Spectroscopy 33
3.3.5 Electrochromic device 33
Chapter 4. Results and Discussion 34
4.1 Microphase Separation of PS-b-P2VP BCPs in Bulk. 34
4.2 Microphase Separation of PS-b-P2VP BCPs in Thin Film. 35
4.2.1 Thin Film Morphologies 35
4.2.2. Control of Microstructural Orientation by Solvent Annealing 36
4.3 Optical Properties of PS-b-P2VP Photonic Crystal Thin Films 40
4.4 Electrochromic Properties of Lamella-Structured Photonic Crystal Thin Films 42
4.4.1 Electrochromism of Lamella-Structured PS-b-P2VP Photonic Thin Films 43
4.4.2 Electrochromism of 72h-Quaternized PS-b-P2VP Photonic Crystal Thin Films 46
4.4.3 Electrochromism by Alternating Positive or Negative Voltage 48
4.4.4 Electrochromism of Photopatterned Photonic Thin Film 50
4.5 Photonic Crystal Thin Film for Sensing Surfactants 52
4.5.1 Optical Properties of PS-b-QP2VP in Surfactants 52
Chapter 5. Conclusion 64
Chapter 6. References 66
參考文獻 References
Chapter 6. References
1. Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
2. Braun, P. V.; Wiltzius, P. Nature 1999, 402, 603.
3. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
4. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
5. Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997, 277, 1225.
6. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
7. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
8. Prum, R. O.; Quinn, T.; Torres, R.H. J Exp Biol. 2006, 209, 748.
9. Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
10. Iohn, S. Phys. Rev. Lett. 1987, 58, 2486.
11. Vlasov, Y A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Nature 2005, 438, 65.
12. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature 2004, 431, 826.
13. Knight, J. C.; Birks, T. A.; Russell, P. S.; Atkin, D. M. Optics Letters 1991, 21, 1547.
14. Krauss, T. F.; DeLaRue, R. M.; Brand, S. A. Nature 1996, 383, 699.
15. Busch, K.; John, S. Phys. Rev. Lett.1999, 83, 967.
16. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
17. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
18. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
19. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett. 2003, 82, 3593.
20. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O. Nat. Mater. 2004, 3, 872.
21. Lawrence, J. R.; Shim, G H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
22. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179.
23. Takeoka, Y. J. Mater. Chem. 2012, 22, 23299.
24. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
25. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G.; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
26. Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
27. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. polymer, 2003, 44, 6549.
28. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
29. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge 2006.
30. Hsueh, H. Y.; Chen, H. Y.; She, M. S.; Chen, C. K.; Ho, R. M.; Gwo, S.; Hasegawa, H.; Thomas, E. L. Nano. Lett. 2010, 10, 4994.
31. Kramer, R. M.; Crookes-Goodson, W. J.; Naik, R. R. Nat. Mater. 2007, 6, 533.
32. Crookes, W.; Ding, L. L.; Huang, Q. H.; Kimbell, J. R.; Horwitz, J.; McFall- Ngai, M. J. Science 2004, 303, 235.
33. Weissman, J. M.; Sunkara, H. B.; Tse, A. S.; Asher, S. A. Science 1996, 274, 959.
34. Schrenk, W. J.; Shrum, W. E.; Wheatley, J. A. US Patent 4937134, 1990.
35. Xia, J.; Ying, Y.; Foulger, S. Adv. Mater. 2005, 17, 2463.
36. Norton, J.; Han, M. G.; Jiang, P.; Creager, S.; Foulger, S. H. Mater. Chem. 2007, 17, 1149.
37. Thomas, E. L.; Walish, J. J.; Lee, J. H.; Lim, H. S. ACS Nano 2012, 6, 8933.
38. Weissman, J. M.; Sunkara, H. B.; Tse, A. S.; Asher, S. A. Science 1996, 274, 95.
39. Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829.
40. Lin, V. S.; Motesharei, K.; Dancil, K. P.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840.
41. Asher, S. A.; Smith, N.; Zhang, J. T. Anal. Chem. 2012, 84, 6416.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.144.32
論文開放下載的時間是 校外不公開

Your IP address is 18.217.144.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code