Responsive image
博碩士論文 etd-0703120-165621 詳細資訊
Title page for etd-0703120-165621
論文名稱
Title
有效規劃行動充電車路徑與充電排程以提升具自適應感測率之感測器的吞吐量
Efficient Path and Charging Scheduling of a Mobile Charging Vehicle to Increase Throughput of Sensors with Adaptive Sensing Rates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-21
繳交日期
Date of Submission
2020-08-03
關鍵字
Keywords
存活節點數目、吞吐量、自適應感測率、路徑與充電規劃、無線可充電感測網路
wireless rechargeable sensor network, path and charging scheduling, adaptive sensing rate, alive sensors, throughput
統計
Statistics
本論文已被瀏覽 143 次,被下載 0
The thesis/dissertation has been browsed 143 times, has been downloaded 0 times.
中文摘要
  由於無線能量傳輸技術的進步,我們能透過無線充電車(Mobile chargingvehicle)替感測器的電池進行充電,而如何設計並優化無線充電車的充電排程,從而延長無線可充感測網路(Wireless rechargeable sensor network)的整體壽命及提升網路吞吐量(Throughput)成為現今多數研究的重點,然而,在過往多半假設感測器的感測率(Sensing rate)為固定不變,這會造成感測器無法因為電量不足而適時調降感測率以便可以爭取更多時間來等待無線充電車前來充電,從而導致感測器的存活數目大幅下降、網路壽命縮短及網路吞吐量降低等問題發生,此外,部分研究也指出感測器的感測率是具自適應(Adaptive sensing rate),也就是感測器可以依據不同需求(例如:偵測到事件或進入省電模式)來動態調控其感測率。
  基於上述考量,本論文針對無線充電車提出一套稱為 Enhance-SimulatedAnnealing based on Adaptive Sensing Rate(ESA-ASR)的路徑規劃與充電排程之演算法,首先,為了有效減少無線充電車於感測器間移動的距離,我們以模擬退火演算法(Simulated annealing)計算無線充電車的初始行駛路徑,接著,為了使無線充電車有效率選擇充電目標,我們考量拜訪感測器的移動距離及生命週期,透過 Preemptive Energy-Drained Sensor(PEDS)方法替能量即將耗盡的感測器優先進行電量補充,此外,我們也考量網路中感測器平均能量消耗的速率,並設計稱為 Energy-Balanced Dynamic Charging Strategy(EBDCS)方法以提升節點存活數目以及平均分配電源補充量,實驗結果顯示,我們所提出的 ESA-ASR 演算法可以有效提升網路整體吞吐量,並且提高存活節點數目。
Abstract
Thanks to the advancement of wireless energy transmission technology, we can chargethe batteries of sensors by using a mobile charging vehicle (MCV). To extend thelifetime of a wireless rechargeable sensor network and also increase its throughput, howto efficiently calculate the moving path and charging schedule of a MCV is critical.However, most of existing studies assume that each sensor has the same (constant)sensing rate. In practice, sensors can dynamically adjust their sensing rates. Forexample, they can lower sensing rates in case of insufficient energy, so as to extendtheir lifetime and gain more time to wait the MCV for recharging them. Withoutconsidering this property, many sensors may die quickly, leading to poor throughputand shorter network lifetime. Moreover, some research efforts also point out that theabove adaptive sensing rate is natural, as sensors can vary their sensing rates based ondifferent requirements (e.g., detecting events or going to a sleeping mode).
Based on the above motivations, this paper proposes an enhance-simulated annealingbased on adaptive sensing rate (ESA-ASR) algorithm to schedule both moving path andcharging behavior of a MCV. First, to reduce the total moving distance that the MCVmoves to visit sensors, we use simulated annealing to calculate the initial path of theMCV. Then, to help the MCV efficiently select the charging target, we propose apreemptive energy-drained sensor (PEDS) method which refers to the moving cost ofthe MCV and also the lifetimes of the visited sensors. It gives a high priority to chargethose sensors which are about to run out of energy. Besides, we also develop an energybalanced dynamic charging strategy (EBDCS) method, which can adaptively decidethe amount of energy that the MCV recharges to each sensor, so as to balance sensors’venergy. Through simulation, we show that our proposed ESA-ASR algorithm caneffectively improve the overall throughput, and also increase the number of alivesensors.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 viii
表次 x
第一章 導論 1
1. 1無線可充電感測網路 1
1. 2研究動機 2
1. 3論文貢獻與章節架構 3
第二章 背景知識 5
2. 1無線行動充電車的數量 5
2. 2無線行動充電車之充電模式 7
2. 3服務站的佈署方式 9
2. 4無線行動充電車之充電週期 9
第三章 相關文獻探討 11
第四章 網路模型與問題定義 15
4. 1網路環境 15
4. 2能量消耗模型 15
4. 3問題定義 16
第五章 研究方法 18
5. 1網路初始化 20
5. 2模擬退火演算法 22
5. 3 PEDS方法 24
5. 4 EBDCS方法 26
第六章 模擬結果與分析 28
6. 1模擬環境與參數設定 28
6. 2 ESA-ASR與現有充電排程方法之比較 29
6.2.1網路吞吐量之比較 29
6.2.2死亡節點數之比較 33
6. 3 ESA-ASR與SA存活節點比例與節點能量分布之比較 38
6. 4 ESA-ASR與SA存活節點位置散佈圖之比較 45
6. 5 ESA-ASR參數對於實驗結果之影響 48
6.5.1 PEDS電量門檻百分比∆E之影響 48
6.5.2 EBDCS門檻值δ之影響 50
6.5.3 EBDCS電池容量權重ε之影響 51
6.5.4 EBDCS浮動電量值權重∆E之影響 52
第七章 結論與未來研究方向 54
參考文獻 56
參考文獻 References
[1] M. Tokala and R. Nallamekala, “Secured algorithm for routing the military field data using dynamic sink: WSN,” International Conference on Inventive Communication and Computational Technologies, 2018, pp. 471-476.
[2] A. G. Ramonet and T. Noguchi, “Node replacement method for disaster resilient wireless sensor networks,” Computing and Communication Workshop and Conference, 2020, pp. 0789-0795.
[3] R. Dinesh and R. Marimuthu, “A survey about WSN and IoT based health care applications and ADPLL contribution for health care systems,” International Conference on Awareness Science and Technology, 2019, pp. 1-8.
[4] K. Haseeb, N. Islam, A. Almogren, and I. Ud Din, “Intrusion prevention framework for secure routing in WSN-based mobile Internet of Things,” IEEE Access, vol. 7, pp. 185496-185505, 2019.
[5] G. P. Hancke and N. A. Vorster, “The feasibility of using resonant inductive power transfer to recharge wireless sensor network nodes,” IEEE Wireless Power Transfer Conference, 2014, pp. 100-105.
[6] Z. Fan, Z. Jie, and Q. Yujie, “A Survey on Wireless Power Transfer based Charging Scheduling Schemes in Wireless Rechargeable Sensor Networks,” International Conference on Control Science and Systems Engineering, 2018, pp. 194-198.
[7] S. B. Rathnayaka, K. Y. See, and K. Li, “On-line impedance monitoring of transformer based on inductive coupling approach,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 2, pp. 1273-1279, 2017.
[8] S. Liu, B. Wang and L. Zhang, “Intelligent adaptive filtering algorithm for electromagnetic-radiation field testing,” IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 6, pp. 1765-1780, 2017.
[9] Q. Xiong, S. Ji, L. Zhu, L. Zhong, and Y. Liu, “A novel DC arc fault detection method based on electromagnetic radiation signal,” IEEE Transactions on Plasma Science, vol. 45, no. 3, pp. 472-478, 2017.
[10] W. Han, K. T. Chau, and Z. Zhang, “Flexible induction heating using magnetic resonant coupling,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 1982-1992, 2017.
[11] M. Zhao, J. Li, and Y. Yang, “A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 12, pp. 2689-2705, 2014.
[12] Y. Peng, Z. Li, W. Zhang, and D. Qiao, “Prolonging sensor network lifetime through wireless charging,” IEEE Real-Time Systems Symposium, pp. 129-139, 2010.
[13] C. Wang, J. Li, Y. Yang, and F. Ye, “A hybrid framework combining solar energy harvesting and wireless charging for wireless sensor networks,” IEEE International Conference on Computer Communications, pp. 1-9, 2016.
[14] C. Lin, G. Wu, M. S. Obaidat, and C. W. Yu, “Clustering and splitting charging algorithms for large scaled wireless rechargeable sensor networks,” Journal of Systems and Software, vol. 113, pp. 381-394, 2016.
[15] L. Xie, Y. Shi, Y. T. Hou, W. Lou, H. D. Sherali, and S. F. Midkiff, “A mobile data gathering framework for wireless rechargeable sensor networks with vehicle movement costs and capacity constraints,” IEEE Transactions on Computers, vol. 23, no. 2, pp. 437-450, 2015.
[16] Y. Shi, L. Xie, T. Hou, and H. Sherali, “On renewable sensor networks with wireless energy transfer,” IEEE INFOCOM, pp. 1350-1358, 2011.
[17] L. Xie, Y. Shi, Y. T. Hou, W. Lou, H. D. Sherali, and S. F. Midkiff, “Bundling mobile base station and wireless energy transfer: Modeling and optimization,” IEEE INFOCOM, 2013, pp. 1636-1644.
[18] T. Zou, W. Xu, W. Liang, J. Peng, Y. Cai, and T. Wang, “Improving charging capacity for wireless sensor networks by deploying one mobile vehicle with multiple removable chargers,” Ad Hoc Networks, vol. 63, pp. 79-90, 2017.
[19] Y. Shi, L. Xie, Y. T. Hou, and H. D. Sherali, “On renewable sensor networks with wireless energy transfer," IEEE INFOCOM, 2011, pp. 1350-1358.
[20] W. Xu, W. Liang, X. Jia and Z. Xu, “Maximizing sensor lifetime in a rechargeable sensor network via partial energy charging on sensors,” IEEE International Conference on Sensing, Communication, and Networking, 2016, pp. 1-9.
[21] W. Liang, Z. Xu, W. Xu, J. Shi, G. Mao, and S. K. Das, “Approximation algorithms for charging reward maximization in rechargeable sensor networks via a mobile charger,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3161-3174, 2017.
[22] P. Zhong, Y. Zhang, S. Ma, X. Kui, and J. Gao, “RCSS: A real-time on-demand charging scheduling scheme for wireless rechargeable sensor networks,” Sensors, vol. 18, 2018.
[23] W. Xu, W. Liang, X. Lin, and G. Mao, “Efficient scheduling of multiple mobile chargers for wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp. 7670-7683, 2016.
[24] L. Fu, L. He, P. Cheng, Y. Gu, J. Pan, and J. Chen, “ESync: Energy synchronized mobile charging in rechargeable wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp. 7415-7431, 2016.
[25] C. Hu and Y. Wang, “Minimizing the number of mobile chargers to keep large-scale wrsns working perpetually”, International Journal of Distributed Sensor Networks, vol. 11, pp. 1-15, 2015.
[26] X. Wang, A. Jabbari, R. Jedermann, R. Laur, and W. Lang, “Adaptive data sensing rate in ad-hoc sensor networks for autonomous transport application,” International Conference on Information Fusion, 2010, pp. 1-8.
[27] J. M. C. Silva, K. A. Bispo, P. Carvalho, and S. R. Lima, “Flexible WSN data gathering through energy-aware adaptive sensing,” International Conference on Smart Communications in Network Technologies, 2018, pp. 317-322.
[28] Z. Chen, J. Ranieri, R. Zhang, and M. Vetterli, "DASS: Distributed adaptive sparse sensing," IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp. 2571-2583, 2015.
[29] I. Amundson, and X. D. Koutsoukos, “A survey on localization for mobile wireless sensor networks,” Mobile Entity Localization and Tracking in GPS-less Environnments, pp. 235-254, 2009.
[30] Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting sink mobility for maximizing sensor network lifetime,” IEEE Hawaii International Conference on System Sciences, pp. 1-9, 2005.
[31] C. Lin, D. Han, J. Deng and G. Wu, "P2S: A primary and passer-by scheduling algorithm for on-demand charging architecture in wireless rechargeable sensor networks," IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 8047-8058, 2017.
[32] P. Shi and S. Jia, “A hybrid artificial bee colony algorithm combined with simulated annealing algorithm for traveling salesman problem,” International Conference on Information Science and Cloud Computing Companion, 2013, pp. 740-744.
[33] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660-670, 2002.
[34] L. He, Y. Zhuang, J. Pan, and J. Xu, “Evaluating on-demand data collection with mobile elements in wireless sensor networks,” Vehicular Technology Conference, 2010, pp. 1-5.
[35] A. Thekkilakattil, S. Baruah, R. Dobrin, and S. Punnekkat, “The global limited preemptive earliest deadline first feasibility of sporadic real-time tasks,” Euromicro Conference on Real-Time Systems, 2014, pp. 301-310.
[36] L. He, L. Kong, Y. Gu, J. Pan, and T. Zhu, “Evaluating the on-demand mobile charging in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 14, no. 9, pp. 1861-1875, 2015.
[37] C. Lin, Z. Wang , D. Han, Y. Wu, C. W. Yu ,and G. Wu, “Tadp : Enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks,” Journal of Systems Architecture, vol. 70, 2016, pp. 26-38.
[38] Bayram, Hüsamettin, and Şahin, Ramazan “A new simulated annealing approach for the traveling salesman problem,” Mathematical and Computational Applications, vol.18, pp. 313-322, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-08-03
校外 Off-campus:開放下載的時間 available 2025-08-03

您的 IP(校外) 位址是 18.218.61.16
現在時間是 2024-04-27
論文校外開放下載的時間是 2025-08-03

Your IP address is 18.218.61.16
The current date is 2024-04-27
This thesis will be available to you on 2025-08-03.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-08-03

QR Code