Responsive image
博碩士論文 etd-0704100-133526 詳細資訊
Title page for etd-0704100-133526
論文名稱
Title
以液相沈積法成長氮氧化矽薄膜及於生長時加上偏壓以改善膜之電特性
The Electric Characteristics of Thin Oxynitride Films Prepared by Liquid Phase Deposition and Quality Improvement by Biasing during the Growth
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-26
繳交日期
Date of Submission
2000-07-04
關鍵字
Keywords
氮氧化矽、照光激發液相沈積法、偏壓加強液相沈積法、液相沈積法、電性
Photo-LPD, LPD, electric properties, SiON, Bias-LPD
統計
Statistics
本論文已被瀏覽 5695 次,被下載 1786
The thesis/dissertation has been browsed 5695 times, has been downloaded 1786 times.
中文摘要
使用六氟矽酸、氨水和硼酸溶液可以用來成長氮氧化矽薄膜,成長速率和折射係數將隨著氨水濃度提高而增加,但是當氨水濃度太高折射係數反而減少。隨著氨水濃度的改變,漏電流和崩潰電壓將被討論,氨水濃度在0.8M是最佳條件。
從二次離子的縱深分析得知,氮和氫豐富的累積在薄膜和基板的介面上。我提出一個模型並認為成長的薄膜是由豐富氮原子累積的膜及較缺乏氮濃度的膜所組成,並且最好的電特性表現在厚度110Å到220Å之間。
參考Photo-LPD-SiO2膜的製作,我提出了照光激發液相沈積法。藉由汞燈照光的激發,在界面的氮原子濃度將會提高,電特性的表現也變的更好。
一個新的液相沈積技術被提出,我稱它作偏壓加強液相沈積法,在此也提出了沈積機制的模型。在負偏壓的基板上可以取得高濃度氮的氮氧化矽膜,其電特性在0.1V的正偏壓基板及0.1V到1V的負偏壓基板比傳統的液相沈積法的表現好,在沈積速率方面,不管是加正偏壓或負偏壓的基板都有明顯的提高,所以偏壓加強液相沈積法可以製作出高品質和高沈積速率的氮氧化矽。
Abstract
ASTRACT

Using an aqueous solution of ammonia hydroxide aqua, hydrosilicofluoric acid and boric acid, an oxynitride film can be deposited. The deposition rate and refractive index increase with the mole concentration of ammonia hydroxide aqua. However, the refractive index decreases as the mole concentration of ammonia hydroxide aqua becomes too high. The leakage current density as a function of mole concentration of ammonia hydroxide aqua was studied. The best experimental condition is found that incorporating ammonia hydroxide aqua of 0.8M will get good results.
The SIMS depth profiles shows nitrogen and hydrogen concentration accumulate at SiON/Si interface. A deposition model is proposed and LPD-SiON can be suggested that it is a combination of N-less LPD-SiON film and N-rich accumulated layer at the interface. The best characteristics of LPD-SiON film are in the range of 110Å-thick to 210Å-thick. When the thickness scales down to 110Å, all the properties become poor.
Photo-LPD-SiON process is proposed as a reference of Photo-LPD-SiO2. By mercury lamp illumination, the performances of J-E relationship and C-V characteristic become better. Nitrogen atomic concentration can increase by photo-enhancement checked by analysis of SIMS depth profile and FTIR spectrum.
A novel technique of LPD process with applying a bias during the growth is proposed and it is called Bias-LPD-SiON. A model of Bias-LPD-SiON deposition mechanism is also proposed. On the negative bias substrate, high nitrogen atomic concentration can be attained. The J-E characteristic at positive bias of 0.1V and negative bias in a range of 0.1V to 1V are better than traditional LPD-SiON film. Then, the deposition rate of positive bias and negative bias LPD-SiON films at 0.1V can reach 32Å/min and 26Å/min, respectively. Therefore, high quality and high deposition rate can be prepared by Bias-LPD-SiON.



目次 Table of Contents
CONTENTS

LIST OF FIGURES.................................vv
LIST OF TABLES.................................vii
ABSTRACT......................................viii

1. Introduction..................................1
1-1 Background...................................1
1-1-1 Silicon Dioxide............................1
1-1-2 Silicon Oxynitride.........................2
1-2 Mechanisms of LPD-SiON.......................5
1-3 Advantages of LPD............................6
1-4 Motivation of Bias-LPD-SiON..................7

2. Experiments...................................9
2-1 Deposition System............................9
2-2 Deposition Procedures.......................10
2-2-1 Si Wafer Cleaning.........................10
2-2-2 Preparation of Deposition Solutions.......10
2-2-3 Preparation of Sample.....................12
2-2-4 Preparation of Photo-LPD-SiON.............12
2-2-5 Preparation of Bias-LPD-SiON..............12
2-3 Fabrication of Metal-oxide-semiconductor
Structure...................................13
2-4 Characterizations...........................14
2-4-1 Physical and Chemical Properties..........14
2-4-2 Electrical Properties.....................14

3. Results and Discussion.......................17
3-1 A Model for LPD-SiON Film Deposition
Mechanisms..................................17
3-1-1 LPD-SiO2 Film Deposition Mechanisms.......17
3-1-2 X-ray Diffraction (XRD) of LPD-SiON Films.18
3-1-3 Proposing of LPD-SiON Deposition
Mechanisms................................18
3-1-4 Rechecking by SIMS depth profile..........19
3-1-5 Rechecking by AES Depth Profile...........20
3-1-6 SEM Views of LPD-SiON Films...............20
3-1-7 Surface Views of LPD-SiON Film............21
3-2 Properties of LPD-SiON Films as a Function
of Deposition Time..........................21
3-2-1 Deposition Rate and Refractive Index as
a Function of Deposition Time.............21
3-2-2 Analyses of FTIR Spectra..................22
3-2-3 Surface Analyses of AFM Image.............22
3-2-4 Electric Characteristics..................23
3-3 Properties of LPD-SiON Films as a Function
of Molarity of Ammonia Hydroxide Aqua.......28
3-3-1 Deposition Rate and Refractive Index as
a Function of Molarity of Ammonia Hydroxide
Aqua......................................28
3-3-2 SIMS Depth Profiles and Analyses..........29
3-3-3 Electric Characteristics..................30
3-4 Photo-enhancement Effect of LPD-SiON........31
3-4-1 SIMS Depth Profiles and Analyses..........31
3-4-2 Analysis of FTIR Spectra..................32
3-4-3 Electrical Characteristics................33
3-5 Characteristics of Bias-LPD-SiON............35
3-5-1 Proposing of Bias-LPD-SiON Deposition
Mechanisms................................35
3-5-2 Rechecking of SIMS Depth Profile..........36
3-5-3 Analyses of FTIR Spectra..................36
3-5-4 Determination of a Current Meter Strung in
the Electric Loop.........................37
3-5-5 Deposition Rate as Functions of Positive
and Negative Bias.........................38
3-5-6 Current Density-Electrical Field (J-E)
Characteristics...........................39
4. Conclusions..................................40

FIGURES 42~81
TABLES 82~83
REFERENCES 84~90
參考文獻 References
REFERENCES

1. C. Y. Chang and S. M. Sze, “Wafer-Cleaning Technology”, ULSI Technology, McGrow-Hill, New York, 1996, pp259.
2. E. F. Duffek, C. Mylorine, and E. A. Benjamin, “Electrode-Reactions and Mechanism of Silicon Anodization in N-Methylancetamide”, J. Electrochem. Soc. 111, 1964, pp1042.
3. S. V. Nguyen, D. Dobuzinky, et al., “Plasma-Assisted Chemical Vapor Deposition and Characterization of High Quality Silicon Oxide Films”, Thin Soild Films, 1990, pp595.
4. S. V. Nguyen and S. Fridmann, “Plasma Deposition and Characterization of Thin Silicon-Rich Silicon-Nitride Films”, J. Electrochem. Soc., 134, 1987, pp2324.
5. C. Chiang and D. B. Fraser, “A Laser Activated CVD Film for Interlayer Dielectric Application”, J. Electrochem. Soc., 135, 1988, pp363.
6. W. Kern and V. Ban, “Chemical Vapor Deposition of Inorganic Thin Films”, in Thin Film Processes (J. L. Vossen and W. Kern, eds) Academic, New York, 1978, pp157.
7. W. Hammond, “Introduction to Chemical Vapor Deposition”, Solid State Tech. 1979, pp61.
8. H. Wallace Fry, Jeffery P. West, et al., “Applications of APCVD TEOS/O3 Thin Films in VLSI IC Fabrication”, Solid State Tech., Mar. 1994, pp31.
9. Sun-Yn, Farabaugh-En, et al., “X-ray Photoelectron-Spectroscopy of O 1s and Si 2p Line in Films of SiOx Formed by Electron-Beam Evaporation”, Thin Solid Films, 1988, pp153.
10. J. Kortlandt and L.Osting, “Deposition and Properties of RF Reactively Sputtered SiO2 Layers”, Solid State Tech., 1982, pp351.
11. F. H. P. M. Habraken and A. E. T. Kuiper et al., “Silicon Nitride and Oxynitride Filmss”, Material Sci. and Engineering, R12, 1994, pp123.
12. W. A. P. Claassen, H. A. J. T. Vanderpol, A. H. Goemans, and A. E. T. Kuiper, “Characterization of Silicon-Oxynitride Films Deposited by Plasma-enhanced CVD”, J. Electrochem. Soc., 133, 1986, pp1458.
13. F. H. P. M. Habraken, and A. E. T. Kuiper, “Silicon Nitride and Oxynitride Films”, Mater. Sci. and Eng. Rev, 12,1994, pp123.
14. C. T. Liu and Y. Ma et al., “Light Nitrogen Implant for Preparing Thin Gate Oxides”, IEEE Electron Device Lett., 18, Mar, 1997, pp105.
15. M. Copel and R. M. Tromp et al., “Effects of Surface Oxide on the Rapid Thermal nitriddation of Si (001)”, J. Vac. Sci. Tech., A (412), Mar/Apl, 1996, pp498.
16. T. Ito, T. Nakamura and H. Ishikawa, “Advantages of Thermal Nitride and Nitroxide Gate Films in VLSI Process”, IEEE Trans. Electron Devices, 29, 1982, pp498.
17. T. Hori, N. Yoshii, H. Iwasaki et al., “Improvement of Dielectric Strength of TiSix-Polycide-Gate System by Using Rapidly Nitrided Oxides” in VLSI Symp. Tech. Dig., 1987, pp63.
18. F. L. Terry, Jr., R. J. Aucion, et al., “Radiation Effect in Nitrided Oxides”, IEEE Electron Device Lett., 4, 1983, pp191.
19. S. K. Lai, J. Lee et al., “Electrical Properties of Nitrided-Oxide Systems for Use in Gate Dielectrics and EEPROM”, in IEDM Tech. Dig., 1983, pp190.
20. S.-T. Chang et al., “Capture and Tunnel Emission of Electrons by Deep levels in Ultrathin Nitrided Oxides on Silicon”, Appl. Phys. Lett., 44, 1984, pp316.
21. S. K. Lai and D. W. Dorng et al., “Effect of Ammonia Annealing on Electron Trappings in Slilcon Dioxide”, J. Electrochem. Soc., 29, 1982, pp2042.
22. M. M. Moslehi, S. C. Shatas et al., “Rapid Thermal Oxidation and Nitridation of Silicon”, in Proc.5th Int. Symp. Silicon Mat. Sci. Technol., ECS 86-4, 1986, pp379.
23. T. Hori, H. Iwasaki, et al., “Charge-Trapping Properties of Ultrathin Nitrided Oxides Prepared by Rapid Thermal Annealing”, IEEE Trans. Electron Devices, ED-35, 1988, pp904.
24. V. J. Kapoor, R. S. Bailey and R. A. Turi, “Chemical-Composition, Charge Trapping and Memory Properties of Oxynitride Films for MNOS Device”, 137, 1990, pp3589.
25. S. S. Wong, et al., “Composition and Electrical Properties of Nitrided-Oxide and Re-Oxidized Nitrided-Oxide”, in Proc. Symp. Silicon Nitride Thin Ins. Films, ECS 83-8, 1983, pp346.
26. F. C. Hsu and K. Y. Chiu, “A Comparative Study of Tunneling, Substrate Hot-electron and Channel Hot-eletron Injection Induced Degradation in Thin-Gate MOSFET”, in IEDM Tech. Dig., 1984, pp96.
27. R. Jayaraman et al., “MOS Electrical Characteristics of Low Pressure Re-Oxidized Nitrided-Oxide”, in IEDM Tech. Dig., 1987, pp570.
28. T. Hori and H. Iwasaki, “Ultra-Thin Re-Oxidized Nitrided-Oxides Prepared by Rapid Thermal Processing”, in IEDM Tech. Dig., 1987, pp570.
29. J. Nulman, J. P. Krusius and L. Rathburn, “Electrical and Structural Characteristics of Thin Nitrided Gate Oxides Prepared by Rapid Thermal Nitridation”, in IEDM Tech. Dig., 1984, pp169.
30. T. Ito, T. Nozaki et al., “Direct Thermal Nitridation of Silicon Oxide Films in Anhydrous Ammonia Gas”, J. Electrochem. Soc., 127, 1980, pp2053.
31. M. L. Naiamn et al., “Properties of Thin Oxynitride Gate Dielectrics Produced by Thermal Nitridation of Silicon Dioxide”, Tech. Dig. IEDM, 1980, pp562.
32. T. Kaga and T. Hagiwara, “Short and Long Term Reliability of Nitrided Oxide MISFETs”, IEEE Trans. Electron Dev.,35, 1988, 929.
33. T. Hori, H. Iwasaki et al., “Electrical and Physical Properties of Ultra-thin Reoxidized Nitrided Oxides Prepared by Rapid Thermal Processing”, IEEE Trans. Electron Dev., 36, 1989, pp340.
34. E. Takeda et al., “VLSI Reliability Challenges:From Device Physics to Wafer Scale Systems”, Proceedings of IEEE, May, 1993, pp653.
35. W. Yang, R. Jayaraman et al., “Optimization of Low Pressure Nitridation / Reoxidaiton of SiO2 for Scaled MOS Devices”, IEEE Trans. Electron Dev., 35, 1988, pp935.
36. M. A. Schmidt et al., “Inversion Layer Mobility of MOSFETs with Nitrided Oxide Gate Dielectrics”, IEEE Trans. Electron Dev., 35, 1988, pp929.
37. H. S. Momose et al., “Very Light Nitrided Oxide MOSFETs for Deep Sub-micron CMOS Devices”, Tech. Dig. IEDM, 1991, pp359.
38. H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, J. Electrochem. Soc., 135, 1989, pp2013.
39. A. Hishinuma, T. Goda, et al, “Formation of Silicon Dioxide Films in Acidic Solution”, Applied Surface Sci., 1991, pp405.
40. C. F. Yeh, C. L. Chen, W. L. and P. W. Yen, Appl. Phys. Lett., 66, 1995, pp938.
41. T. Homma, T. Goda, et al., “A New Interlayer Formation Technology for Completely Planarized Multilevel Interconnection by Using LPD”, Symposium on VLSI Technology, 1990, pp3.
42. K. Kanba, T. Homma, et al., “A 7 Mask CMOS Technology Utilizing Liquid Phase Selective Oxide Deposition”, IEDM Tech. Dig., 1991, pp637.
43. C. F. Yeh, S. S. Lin, et al., “Novel Technique for SiO2 Formed by Liquid Phase Deposition for Low Temperature Processed Polysilicon TFT”, IEEE Electron Dev. Letts., EDL-14, 1993, pp403.
44. Y. P. Shen and J. G. Hwu, IEEE Photon. Technol. Lett., 8, 1996, pp420.
45. S. K. Ghandhi, “Etching and Cleaning”, in VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.
46. K. Sangwal, “Etching of Crystals Theory, Experiment and Application”, North-Halland, New York, 1987, pp426.
47. T. Homma, T. Katoh, et al., “A Selective SiO2 Film-Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections”, J. Electrochem. Socc., Vol.140, 1993, pp2410.
48. C. Y. Chang, and S. M. SZE, “ULSI Technology”, McGRAW-HILL, New York, 1996, pp60.
49. F. H. P. M. Habraken, and A. E. T. Kuiper, “Silicon –Nitride and Oxynitride Films”, Mater. Sci. and Eng. Rev, 12, 1994, pp123.
50. David R. Lide, “Strength of chemical bonds”, HANDBOOK of CHEMISTRY and PHYSICS (73RD), CRC Press, 9, 1992, pp129.
51. Z. Q. Yau, H. B. Harrison, “High-Quality Ultrathin Dielectric Films Grown on Silicon in a Nitric-Oxide Ambient”, Appl. Phys. Lett., 64, 1994, pp3584.
52. S. Dimitrijev, D. Sweatman and H. B. Harrison, “Model for Dielectric Growth on Silicon in a Nitrous-Oxide Environment”, Appl. Phys. Lett., 62, 1993, pp1539.
53. F. H. P. M. Habraken and A. E. T. Kuiper, Master. Sci. & Eng., 12, 1994, pp3179.
54. Streetman, Ben, G, “Solid State Electronic Devices (2nd ed)”, Prentice-Hall, 1980.
55. D. Kouvatsos, J. G. Huang, and R. J. Jaccodine, “Fluorine-Enhanced Oxidation of Silicon-Effects of Fluorine on Oxide Stress and Growth-Kinetics”, 138, 1991, pp1752.
56. K. P. MacWilliams, L. F. Halle, and T. C. Zietlow, “Improved Hot-Carrier Resistance with Fluorinated Gate Oxide”, IEEE Electron Device Lett, EDL-11, 1990, pp3.
57. E. F. Dasilva, Y. Nishioka, and T. P. Ma, “Radiation Response of MOS Capacitors Containing Fluorinated Oxides”, IEEE Trans. Nucl. Sci, NS-34, 1987, pp1190.
58. Y. Nishioka, K. Ohyu, Y. Ohji, N. Natuaki, K. Mukai, and T. P. Ma, “Hot-Electron Hardened Si-Gate MOSFET Utilizing F-Implantation”, IEEE Electron Device Lett, EDL-10, 1989, pp141.
59. C. T. Huang, P. H. Chang and J. S. Shie, “Photoassisted Liquid-Phase Deposition of Silicon Dioxide”, J. Electrochem. Soc., Vol.143, 1996 pp2044.
60. A. K. Sinha and T. E. Smith, “Electrical Properties of Si-N films Deposited on Silicon from Reactive Plasma”, J. Appl. Phys., Vol.49, 1978, pp2756.
61. K. Hamano, Y. Numazawa and K. Yamazaki, “Structural and Electrical Properties of Photo-CVD Silicon Nitride Film”, Jpn. J. Appl. Phys., Vol.23, 1984, pp1209.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code