Responsive image
博碩士論文 etd-0704100-144139 詳細資訊
Title page for etd-0704100-144139
論文名稱
Title
電漿加工與工作件之傳輸現象研究
Transport Process Between a Plasma and Workpiece
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-29
繳交日期
Date of Submission
2000-07-04
關鍵字
Keywords
熱傳係數、黏滯應力、熱流量、電荷數、速度分佈函數、反射係數、相變化、平衡融化溫度、電漿、平均壓力、密度、流體速度、成核溫度、快速固化
sheath, presheath, nonequilibrium kinetics, maxwell-boltzmann
統計
Statistics
本論文已被瀏覽 5680 次,被下載 1972
The thesis/dissertation has been browsed 5680 times, has been downloaded 1972 times.
中文摘要
       摘     要       


本論文擬對電漿加工中所涉及之電漿與工件表面之傳輸現象及薄金屬液層於冷工件上之快速固化熱傳現象進行探討,本文區分為兩個單元,於第一單元中廣泛探討薄融化金屬液層於冷工件上之快速固化熱傳現象和液層底部的熱傳係數,液層的快速固化是由非平衡的動力條件所支配,而工件之融化是由平衡的融化溫度所支配,本文採用傳統的相變化問題來模擬此物理現象,並解一維的非穩態熱傳導方程式,其中液層與工件及相與相間的各種不同熱、物理性質皆被考慮,結果顯示出各種獨立無因次參數,如Stefan number、接觸 Biot number、動力係數、液層的初始溫度、平衡融化溫度、成核溫度、固體的熱傳導係數、工件的平衡融化溫度、固體與液體的熱傳導係數、液層與工件的比熱比、潛熱比、工件與液層的密度比,對於液層與工件之非穩態溫度分佈及液層固化率、工件融化率和液層底部的熱傳係數之改變量的影響,另外結果也顯示出非穩態之液層底部的熱傳係數或Biot number之改變量,可分為五種情況:液體液層與固體工件、液體液層與液體工件、固體液層與固體工件、固體液層與液體工件及液體液層成核固化時,本文也結論出如何適當地選取各無因次參數,以掌控液層的固化及工件的融化之起始時間,並提供液層底部的熱傳係數之了解與預測。
  第二單元擬探討電漿與工件表面之間的各項轉換變數之關係,本文所討論之無碰撞Presheath區,乃位於Sheath區與電漿之間,而Sheath區,乃位於可反射離子和電子之平面工件表面與Presheath區之間,其中正離子與電子的速度分佈函數及各項轉換變數,經由動力分析模式,獲得解析解。因為接近工件表面之離子與電子的速度分佈函數呈現高度非Maxwell-Boltzmann速度分佈函數,固擬精確預測其離子與電子之密度、流體速度、平均壓力、黏滯應力和熱流量等轉換變數,需要應用動力分析模式。研究結果顯示Presheath區和Sheath區中之離子與電子的各項無因次量轉換變數,可以由獨立無因次參數離子與電子的反射係數、Presheath邊界上電子與離子的溫度比、離子與電子的質量比和電荷數等所組成的超函數所表示。本文並探討各種獨立無因次參數對於工件表面上之各項轉換變數之影響。另本文也對所預測之Presheath區和Sheath區中之離子與電子的各項無因次量轉換變數之結果與Schwager和Birdsall(1990)所預測之結果做一比對。
Abstract
       英 文 摘 要       


Heat transfer of a molten splat to a thin layer rapidly solidified on a cold substrate and the heat transfer coefficient at the bottom surface of a splat is extensively and self-consistently investigated. Rapid freezing in the splat is governed by a nonequilibrium kinetics at the solidification front in contrast to the melting in the substrate simulated by the traditional phase change problem. Solving one-dimensional unsteady heat conduction equations and accounting for distinct properties between phases and splat and substrate, the results show the effects of dimensionless parameters such as the dimensionless kinetic coefficient, stefan number, latent heat ratio, initial, equilibrium melting, and nucleation temperature, and conductivity, density, and specific heat ratios between solid and liquid and splat and substrate on unsteady temperature fields and freezing and melting rates in the splat and substrate and on unsteady variation of Biot number are presented. The unsteady variation of the heat coefficient or Biot number can be divided by five regimes: liquid splat-solid substrate, liquid splat-liquid substrate, solid splat-solid substrate, solid splat-liquid substrate, and the nucleation of the splat. Appropriate choices of dimensionless parameters to control the time for freezing and melting of the splat and substrate and an understanding and estimation of the heat coefficient at the bottom surface of the splat therefore are presented.
The velocity distribution function and transport variables of the positive ions and electrons in the collisionless presheath and sheath of a plasma near a wall partially reflecting ions and electrons are determined from a kinetic analysis. Since velocities of the ions and electrons near the wall are highly non-Maxwell-Boltzmann distributions, accurate predictions of transport variables such as density, fluid velocity, mean pressure, fluidlike viscous stress and conduction require kinetic analysis. The result find that dimensionless transport variables of ions and electrons in the presheath and sheath can be exactly expressed in terms of transcendental functions determined by dimensionless independent parameters of ions and electrons reflectivities of the wall, ion-to-electron mass ratio, charge number and electron-to-ion temperature ratio at the presheath edge. The effects of the parameters on transport variables at the wall are also obtained. The computed transport variables in the presheath and sheath show agreement with available theoretical data for a completely absorbing wall.
目次 Table of Contents
       目     錄       


目  錄-------------------------------------------------------------------------- 1
圖表索引-------------------------------------------------------------------------- 4
摘  要-------------------------------------------------------------------------- 9
英文摘要-------------------------------------------------------------------------- 11
符號說明-------------------------------------------------------------------------- 13
第一章 緒論-------------------------------------------------------------------- 18
    1-1薄金屬液層於冷工件上之快速固化現象------------------ 18
      1-1-1研究背景-------------------------------------------------- 18
      1-1-2研究目的-------------------------------------------------- 19
      1-1-3文獻回顧-------------------------------------------------- 19
      1-1-4研究範圍-------------------------------------------------- 21
    1-2無碰撞Presheath與Sheath區動力模式之
      轉換變數探討--------------------------------------------------- 21
      1-2-1研究背景-------------------------------------------------- 21
      1-2-2研究目的-------------------------------------------------- 22
      1-2-3文獻回顧-------------------------------------------------- 23
      1-2-4研究範圍-------------------------------------------------- 25
第二章 理論分析-------------------------------------------------------------- 26
    2-1薄金屬液層於冷工件上之快速固化現象------------------ 26
      2-1-1前言-------------------------------------------------------- 26
      2-1-2基本假設及考慮----------------------------------------- 26
      2-1-3統御方程式的建----------------------------------------- 26
        2-1-3-1液層的熱傳導方程式------------------------- 27
        2-1-3-2工件的熱傳導方程式------------------------- 27
        2-1-3-3無因次化的統御方程式---------------------- 28
      2-1-4數值分析-------------------------------------------------- 30
      2-1-5數值分析解的步驟-------------------------------------- 33
    2-2無碰撞Presheath與Sheath區動力模式之
      轉換變數探討--------------------------------------------------- 34
      2-2-1前言-------------------------------------------------------- 34
      2-2-2基本假設及考慮----------------------------------------- 35
      2-2-3離子分佈函數的建立----------------------------------- 36
        2-2-3-1Sheath區中離子分佈函數的建立----------- 37
        2-2-3-2Presheath區中離子分佈函數的建立------- 39
        2-2-3-3Presheath區和Sheath區之離子分佈
           函數的結合-------------------------------------- 42
        2-2-3-4離子密度---------------------------------------- 43
      2-2-4電子分佈函數的建立----------------------------------- 44
        2-2-4-1 Sheath中電子分佈函數的建立------------- 44
      2-2-5 Presheath區離子之探討------------------------------- 45
        2-2-5-1 Bohm準則-------------------------------------- 47
        2-2-5-2離子密度----------------------------------------- 48
        2-2-5-3離子質量流量----------------------------------- 49
        2-2-5-4離子動量流量----------------------------------- 50
        2-2-5-5離子能量流量----------------------------------- 52
        2-2-5-6在Presheath邊界上的平衡狀態------------ 53
      2-2-6 Sheath區離子之探討----------------------------------- 53
        2-2-6-1離子密度----------------------------------------- 56
        2-2-6-2離子質量流量----------------------------------- 57
        2-2-6-3離子動量流量---------------------------------- 57
        2-2-6-4離子能量流量---------------------------------- 59
      2-2-7 Sheath區電子之探討----------------------------------- 59
        2-2-7-1電子密度---------------------------------------- 59
        2-2-7-2電子質量流量----------------------------------- 60
        2-2-7-3電子動量流量----------------------------------- 60
        2-2-7-4電子能量流量----------------------------------- 61
      2-2-8工件表面之條件----------------------------------------- 62
第三章 結果和討論---------------------------------------------------------- 64
第四章 結論------------------------------------------------------------------- 78
參考文獻------------------------------------------------------------------------ 141
附 錄 A------------------------------------------------------------------------- 148
自  述------------------------------------------------------------------------ 150

參考文獻 References
       參 考 文 獻       


1. Abramowitz, M., and Stegun, I. A. (editors), 1970, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards,Washington,D.C.,pp.228-233,255-263,297-304.
2. Amon, C. H., Merz, R., Prinz, F. B., and Schmaltz, K. S., 1994, Thermal modeling and experimental testing of MD spray shape deposition processes. In Heat Transfer 1994, Proceedings of Tenth International Heat Transfer Conference, Vol. 7, pp. 321-324, ed. G. F. Hewitt, IchemE Publishing, Brighton.
3. Amon, C. H., Schmaltz, K. S., Merz, R., and Prinz, F. B., 1996, Numerical and experimental investigation of interface bonding via substrate remelting of an impinging molten metal droplet. Journal of Heat Transfer, vol. 118, pp. 164-172.
4. Bachet, G., Cherigier, L., and Doveil, F., 1995,”Ion Distribution Function Observations in a Multipolar Velocity Argon Discharge,” Physics of Plasmas, Vol.2,pp.1782-1788.
5. Benilov, M. S., and Marotta, A., 1995,”A Model of the Cathode Region of Atmospheric Pressure Arcs,” Journal of Physics D: Applied Physics, Vol.28, pp.1869-1882.
6. Bennett, T., and Poulikakos, D., 1994, Heat transfer aspects of splat-quench solidification : Modeling and Experiment, J. Mater. Sei., Vol.29, pp.2025-2039.
7. Bhatnagar, , P. L., Gross, E. P., and Krook, M., 1954,”A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems,” Physical Review, Vol.94, pp.511-525.
8. Bissell, R. C., 1987,”The Application of the Generalized Bohm Criterion to Emmert’s Solution of the Warm Ion Collisionless Plasma Equation,” Physics of Fluids, Vol.30, pp.2264-2265.
9. Bissell, R. C., Johnson, P. C., and Stangeby, P. C., 1989,”A Review of Models for Collisionless One-Dimensional Plasma Flow to a Boundary,” Physics of Fluids B, Vol.1, pp.1133-1140.
10.Bohm, D., 1949,”Minimum Ionic Kinetic Energy for a Stable Sheath,”in The Characteristics of Electrical Discharges in Magnetic Fields, edited by A. Guthrie and R. Wakerling, McGraw Hill, New York, Chapter 3, pp.77-86.
11.Braginskii, S. I., 1965,”Transport Processes in a Plasma,” in Review of Plasma Physics, edited by Leontovich, M. A., Consultants Bureau, New York, Vol.1, pp.205-311.
12.Burden, M. H., and Jones, H., 1970, Determination of cooling rate in splat-cooling from scale of microstructure, J. Inst. Metals, vol. 98, pp. 249-252.
13.Cantor, B., 1986, in Science and Technology of the Undercooled Melt, eds. P. R. Sahm, H. Jones and C. M. Adam, Martinus Nijhoff, Dordrecht, Netherlands, pp. 3-27.
14.Chapman, S., and Cowling, T. G., 1952, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, Chapter 7.
15.Chen, F. F., 1974,Introduction. To Plasma Physics, Plenum Press, New York, Chapter 8.
16.Chodura, R., 1986,”Plasma Flow in the Sheath and the Presheath of a Scrape-Off Layer,” in Physics of Plasma Wall Interactions in Controlled Fusion(edited by D. E. Post and R. Behrisch), Proceedings of NATO Advanced Study institute, July 30-Aug. 10, 1984, Val-Morin, Quebec, Canada, Plenum, New York, pp.99-134.
17.Clyne, T. W., 1984, Metall. Trans. B, vol. 15B, pp. 369-381.
18.Emmert, G. A., Wieland, R. M., Mense, A. T., and Davidson, J. N., 1980,:Electric Sheath and Presheath in a Collisionless, Finite Ion Temperature Plasma,: Physics of Fluids, Vol.23, pp.803-812.
19.Erde’lyi, A.(editor),1953, Higher Transcendental Functions, Vol.2, McGraw-Hill, New York, Chapter 9.
20.Goeckner, M. J., Goree, J., and Sheridan, T. E., 1992,”Measurements of Ion Velocity and Density in the Plasma Sheath,”Physics of Fluids B, Vol.4, pp.1663-1670.
21.Gradshteyn, I. S., and Ryzhik, I. M., 1980, Table of Integrals, Series, and Products,(edited by Jeffrey, A., and translated from the Russian by Scripta Technical, Inc., England), pp.89, 310, 317, 641, 931.
22.Harbur, D. R., Anderson, J. W., and Maraman, W. J., 1969, Rapid quenching drop smasher, Trans. AIME 245, pp. 1055-1061.
23.Harrison, E. R., and Thompson, W. B., 1959,”The Low Pressure Plane Symmetric Discharge,”Proc. Phys. Soc. London, Vol.74, pp.145-152.
24.Hsu, K. C., 1982,”A Self-Consistent Model for the High Intensity Free-Burning Argon Arc,” Ph. D. thesis, Department of Mechanical Engineering, University of Minnesota, Dec. 1982.
25.Hsu, K. C., and Pfender, E., 1983,”Analysis of the Cathode Region of a Free-Burning High Intensity Argon Arc,”Journal of Applied Physics, Vol.54, pp.3818-3824.
26.Hu, P. N., and Ziering, S., 1966,”Collisionless Theory of a Plasma Sheath near an Electrode,” Physics of Fluids, Vol.9, pp.2168-2179.
27.Jones, H., 1973, Splat cooling and metastable phases, Rep. Prog. Phys. vol. 36, pp. 1425-1497.
28.Jones, H., 1980, In Proc. Conf. On Metallic Glasses, Budapest, Hungary, pp. 28-45.
29.Kang, K., Waldvogel, J., and Poulikakos, D., 1995, Remelting phenomena in the process of splat solidification. Journal of Material Science, vol. 30, pp. 4912-4925.
30.Kim, G. H., Hershkowitz, N., Diebold, D. A., and Cho, M. H., 1995,”Magnetic and Collisional eFFects on Presheaths,” physics of Plasma, Vol.2, pp.3222-3233.
31.Kuijpers, T. W, and Zaat, J. H., 1974, Influence of oxygen and cooling rate on the microstructure and microhardness of plasma-sprayes milybdenum. Metals Technology, vol. 1, pp. 142-150.
32.Lee, S. L., 1989, Weighting function scheme and its application on multidimensional conservation equation. International Journal of Heat and Mass Transfer, vol. 32, pp. 2065-2073.
33.Lee, S. L., and Tzong, R. Y., 1991, An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface. International Journal of Heat and Mass Transfer, vol. 34, pp. 1491-1502.
34.Levi, C. G., and Mehrabian, R., 1982, Metall. Trans. A, 13A, pp. 221-234.
35.Liu, W., Wang, G. X., and Matthys, E. F., 1995, Thermal analysis and measurements for a molten metal drop impacting on a substrate : cooling, solidification and heat transfer coefficient. International Journal of Heat and Mass Transfer, vol. 38, pp. 1387-1395.
36.Liu, W., Wang, G. X., and Matthys, E. F., 1998, Thermal analysis and measurements for a molten metal drop impacting on a substrate : cooling, solidification and heat transfer coefficient. International Journal of Heat and Mass Transfer, vol. 38, pp. 1387-1395.
37.Loulou, T., Artyukhin, E. A., and Bardon. J. P., 1994, solidification of molten tin drop on a nickel substrate, Heat Transfer 1994, IchemE Pub., Brighton, United Kingdom. Vol. 4, pp. 73-78.
38.Ludwig, A. and Frommeyer, G., 1992, Investigations on the heat transfer during PFC-melt-spinning by on-line high- speed temperature measurements. In Melt-spinning and Strip Casting (edited by E. F. Matthys), pp. 163-171. TMS, Warrendate, PA.
39.Mizukami, H., Suzuki, T., and Umeda. T., 1992, Numerical analysis for initial stage of rapid solidification of 18Cr-8Ni stainless steel, Tetsu-to-Ha-gane, Vol. 78, pp. 767-773.
40.Mizukami, H., Suzuki, T., Umeda, T., and Kurz, W., 1993, Initial stage of rapid solidification of 18-8 stainless steel, Mater. Sci. Engng A173, pp. 363-366.
41.Murphy, E. L., and Good, Jr., R. H., 1956,”Thermionic Emission, Field Emission, and the Transition Region,”Physical Review, Vol.102, pp.1464-1473.
42.Ordonez, C. A., 1992,”Fully Kinetic Plasma-Sheath Theory for a Cold-Electron Emitting Surface,”Physics of Fluids B, Vol.4, pp.778-783.
43.Prates, M., and Biloni, H., 1972, Variables affecting the nature of the chill zone, Metall. Trans. Vol. 3, pp. 1501-1510.
44.Predecki, P., Mullendorf, A. W., and Grant, N. J., 1965, Astudy of the splat cooling technique, Trans. AIMW 233, pp. 1581-1586.
45.Procassini, R. J., Birdsall, C. K., and Morse, E. C., 1990,”A Fully Kinetic, Self-Consistent Particle Simulation Model of the Collisionless Plasma-Sheath Region,” Physics of Fluids B, Vol.2, pp.3191-3205.
46.Riemann, K.-U., 1991,”The Bohm Criterion and Sheath Formation,” Journal of Physics D: Applied Physics, Vol.24, pp.493-518.
47.Ruhl, R. C., Materal Science Engineering, 1967, vol. 1, pp. 313-320.
48.Saha, M. N., 1920,”Ionization in the Solar Chromosphere,” Phil. Mag. Series 6, Vol.40, pp.472-488.
49.Scheuer, J. T., and Emmert, G. A., 1988,”A Collisional Model of the Plasma Presheath,” Physics of Fluids, Vol.31, pp.1748-1756.
50.Scheuer, J. T., and Emmert, G. A., 1990,”A Fluid Treatment of the Plasma Presheath for Collisionless and Collisional Plasma,” Physics of Fluids B, Vol.2, pp.445-451.
51.Schwager, L. A., and Birdsall, C. K., 1990,”Collector and Source Sheaths of a Finite Ion Temperature Plasma,”Physics of Fluids B, Vol.2, pp.1057-1068.
52.Self, S. A., 1963,”Exact Solution of the Collisionless Plasma-Sheath Equation,”Physics of Fluids, Vol.6, pp.1762-1768.
53.Shingu, P. H., and Ozaki, R., 1975, Metall. Trans. A, vol. 6A, pp. 33-37.
54.Smith, L. P., 1930,”The Emission of Positive Ions from Tungsten and Molybdenum,”Physical Review, Vol.35, pp.381-395.
55.Stangeby, P. C., 1984,”Plasma Sheath Transmission Factors for Tokamak Edge Plasma,”Physics of Fluids, Vol.27, pp.682-690.
56.Steffens, H. D., Wielage, B., and Drozak, J., 1991, Surface Coatings Technology, vol. 45, pp. 290-308.
57.Takeshita, K., and Shingu, P. H., 1983, Trans. Japan Inst. Metals, vol. 24, pp. 293-300.
58.Tonk, L., and Langmuir, I., 1929,”A General Theory of the Plasma of an Arc,” Physical Review, Vol.34, pp.876-992.
59.Turnbull, D., 1949, Thermodynamics in Physical Metallurgy, American Society for Metals, Cleveland, pp. 283-306.
60.Vincenti, W. G., and Kruger, Jr., C. H., 1970, Introduction to Physical Gas Dynamics, Wiley, New York, pp.320-325.
61.Wang, G. X., and Matthys, E. F., 1991, Modeling of heat transfer and solidification during splat cooling : effect of splat thickness and splat/substrate thermal contact. International Journal of Rapid Solidification, vol. 6, pp. 141-174.
62.Wang, G. X., and Matthys, E. F., 1992, Numerical modeling of phase change and heat transfer during rapid solidification processes : use of control volume integral with element subdivision. International Journal of Heat and Mass Transfer, vol. 35, pp. 141-153.
63.Wang, G. X., and Matthys, E. F., 1994, Interfacial thermal contact during rapid solidification on a substrate, Heat Transfer 1994, Proceedings od the Tenth International Heat Transfer Conference, IchemE Pub., Brighton, United Kingdom, Vol. 4, pp. 169-174.
64.Wang, G. X., and Matthys, E. F., 1996, Experimental investigation of interfacial thermal conductance for molten metal solidification on a substrate. Journal of Heat Transfer. Vol. 118. pp. 157-163.
65.Wang, S. P., Wang, G. X., and Matthys, E. F., 1998, Melting and resolidification of a substrate in contact with a molten metal : operational maps. International Journal of Heat and Mass Transfer, vol. 41, pp. 1177-1188.
66.Yang, T. F., Wan, A. S., Megusar, J., and Luan, G. S., 1990,”Measurement of Sheath Potential and Metal Surface Phenomena at the Alcator C Plasma Edge,” J. Nuclear Materials, Vol.172, pp.220-227.
67.Zaat, J. H., 1983, A quarter of a century of plasma spraying. Annual Review of Material Science, vol. 13, pp. 9-42.
68.Zhang, X., and Atrens, A., 1992, The effect of thermophysical properties on the rapid solidification characteristics of different materials according to a thermokinetic model. International Journal of Rapid Solidification. Vol. 7, pp. 83-107.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code