Responsive image
博碩士論文 etd-0704106-154055 詳細資訊
Title page for etd-0704106-154055
論文名稱
Title
全數位元件之低功率鎖相迴路電路設計與植入式系統單晶片之無線負載切換調變電路設計
All-digital Low-power PLL Circuit Design and Load Shift Keying Wireless Modulator Circuit Design for Implantable Biomedical SOC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-15
繳交日期
Date of Submission
2006-07-04
關鍵字
Keywords
負載切換調變電路、植入式、低功率、全數位鎖相迴路
low power, ADPLL, LSK modulator, implantable
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
本論文的第一個題目介紹一個全數位元件之低功率鎖相迴路電路。由於採用使用標準元件庫之設計方式,不但有效縮短設計時間,亦同時提高電路之可攜性與重覆使用性。針對全數位式鎖相迴路之功率消耗大,違反時序,與發生突波之問題,本設計提出一降低功率控制電路與多工器來解決。此全數位鎖相迴路電路於輸出時脈166 MHz時,功率消耗僅有1.45 mW。晶片實作為採用台灣積體電路 (Taiwan Semiconductor Manufacturing Company,TSMC) 0.18 um 1P6M CMOS標準元件庫製程。
本論文的第二個題目介紹植入式生醫系統單晶片之無線負載切換調變電路設計。達成使用無線射頻傳輸介面將晶片內部訊號向外傳輸與晶片外部之控制訊號及功率傳入晶片之目的,增加使用植入式生醫晶片之方便性與安全性。所提出之負載切換調變電路相較於傳統之設計更加省電與節省面積,使植入式生醫晶片之設計功率分配更具彈性。晶片實作為採用TSMC 0.35 um 2P4M CMOS製程。無線傳輸介面採用PCB板與離散元件實作。
Abstract
The first topic of this thesis is to propose a design of an all-digital low–power PLL (ADPLL). This design is implemented by only using standard cell library. The design cycle is effectively reduced. Furthermore, the portability and reusability of the proposed design is significantly raised. The large power consumption, glitch hazards, and timing violations of prior ADPLL designs are avoided by the proposed control method and modified DCO with multiplexers. The proposed design is implemented by only using the standard cell library of TSMC (Taiwan Semiconductor Manufacturing Company) 0.18 um 1P6M CMOS process. The feature of power saving is verified by measurement, which shows that the power consumption of the proposed ADPLL is merely 1.45 mW at 166 MHz output.
The second topic of this thesis is a load shift keying wireless modulator circuit for implantable biomedical SOC. We successfully realize data and power transmission between outer controller and an implantable chip via wireless RF transmission interface. The convenience and the safety of using the implantable biomedical chip are significantly improved. The proposed on-chip LSK modulator consumes less power and area than those of traditional designs. Hence, the design margin of the implantable biomedical chip will be relaxed. The proposed LSK modulator is implemented with TSMC 0.35um 2P4M mixed-signal process. The proposed wireless RF transmission interface is implemented on PCB with discrete components.
目次 Table of Contents
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 簡介 1
1.1 論文動機 1
1.2 先前文獻探討 3
1.2.1 鎖相迴路 3
1.2.2 負載切換調變電路 4
1.3 論文大綱 4
第二章 全數位元件之低功率鎖相迴路設計 6
2.1 簡介 6
2.2 原理說明 7
2.3 電路架構設計 8
2.3.1 相位頻率偵測器 8
2.3.2 數位控制震盪器 11
2.3.3 降低功率控制電路 14
2.3.4 除頻電路 17
2.3.5 結論 17
2.4 測試考量 18
2.5 模擬結果 19
2.5.1 模擬波形 19
2.5.2 晶片規格 22
2.5.3 規格比較 23
2.6 晶片量測 24
2.6.1 實測結果 24
2.6.2 設計規格與實測結果比較 26
2.6.3 量測後討論 27
2.6.4 改善方法 28
2.6.5 晶片照相圖 29
第三章 植入式系統單晶片之無線負載切換調變電路設計 31
3.1 簡介 31
3.2 原理說明 32
3.3 電路架構設計 33
3.3.1 外部感應電路 34
3.3.2 感應連結方程式 36
3.3.3 內部感應電路 37
3.3.4 負載切換調變電路 38
3.3.5 結論 40
3.4 測試考量 40
3.5 模擬結果 41
3.5.1 模擬波形 41
3.5.2 電路規格 43
3.6 量測結果 44
3.6.1 量測方法 44
3.6.2 設計規格與實測結果 45
3.6.3 量測後討論與改善方法 48
3.6.4 晶片照相圖 49
第四章 結論與相關成果 51
參考文獻 53
參考文獻 References
[1] J.-J. Jong, and C.-Y Lee, “An all-digital phase-locked loop for high-speed clock generation, ” IEEE J. Solid-State Circuits, vol. 38, pp. 347-351, Feb. 2003.

[2] T. Olsson, and P. Nilsson, “A digitally controlled PLL for SoC applications, ” IEEE J. Solid-State Circuits, vol. 39, pp. 751-760, May 2004.

[3] J.-S. Chiang, and K.-Y Chen, “The design of an all-digital phase-locked loop with small DCO hardware and fast phase lock, ” IEEE Trans. Circuits and Systems II, vol. 46, no. 7, pp. 945-950, July 1999.

[4] J. Dunning, G. Garcia, J. Lundberg, and Ed Nuckolls, “An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors, ” IEEE J. Solid-State Circuits, vol. 30, no. 4, pp. 412-422, Apr. 2004.

[5] T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, “Design and analysis of a portable high-speed clock generator, ” IEEE Trans. Circuits Systems II, vol. 48, no. 4, pp. 367-375, Apr. 2001.

[6] T.-D. Chiueh, J.-B. Yang, and J.-S. Wu, “Design and implementation of a low-voltage fast-switching mixed-signal-controlled frequency synthesizer, ” IEEE Trans. Circuits and Systems II, vol. 48, no. 10, pp. 961-971, Oct. 2001.

[7] R. Nonis, N. Da Dalt, P. Palestri, and L. Selmi, “Modeling, design and characterization of a new low jitter analog dual tuning LC-VCO PLL architecture, ” IEEE Inter. Symp. on Circuits and Systems, vol. 4, pp. 553-556, May 2004.

[8] R. Nonis, N. Da Dalt, P. Palestri, and L. Selmi, “Modeling, design and characterization of a new low jitter analog dual tuning LC-VCO PLL architecture, ” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1303-1309, June 2005.

[9] A. M. Fahim, and M. I. Elmasry, “A fast lock digital phase-locked-loop architecture for wireless applications, ” IEEE Trans. Circuits and Systems II, vol. 50, no. 2, pp. 63-72, Feb. 2003.

[10] C. Kim, I. Hwang, and S. Kang, “A low-power small-area ±7.28 ps jitter 1GHz DLL-based clock generator, ” IEEE J. of Solid-State Circuits, vol. 37, no. 11, pp. 1414-1420, Nov. 2002.

[11] C.-C. Wang, J.-M. Huang, and L.-P. Lin, “A low-jitter 80 MHz PLL for DVB-T receivers, ” Inter. Conf. on Systems and Signal, pp. 89, CD-ROM version, E-V, Apr. 2005.

[12] G. Wang, W. Liu, M. Sivaprakasam, and G.-A. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants, ”IEEE Trans. Circuits and Systems I, to be published.

[13] C. Hitzelberger, Y. Manoli, R. Hakenes, and S. Gross, “A microcontroller embedded ASIC for an implantable electro-neural stimulator, ”ESSCIRC Solid-State Circuits Conf., pp. 413-416, Sept. 2001.

[14] Y. Li, and J. Liu, “A 13.56MHz RFID transponder front-end with merged load modulation and voltage doubler-clamping rectifier circuits, ”IEEE Inter. Symp. on Circuits and Systems, pp. 5095-5098, May 2005.

[15] Z. Tang, B. Smith, J.-H. Schild, and P.-H. Peckham, “Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator, ”IEEE Trans. on Biomed. Eng., vol. 42, no. 5, pp. 524-528, May 1995.

[16] Y. Hu, J.-F. Gervais, and M. Sawan, “High power efficiency inductive link with full-duplex data communication, ”Inter. Conf. on Electronics, Circuits and Systems, vol. 1, pp. 359-362, Sept. 2002.

[17] K. Finkenzeller, “RFID Handbook : Fundamentals and Applications in Contact-less Smart Cards and Identification, 2nd Ed., ” John Wiley & Sons, Inc., New York, 2003.

[18] D. A. Johns and K. Martin, “Analog Integrated Circuit Design, ” John Wiley & Sons, Inc., New York, 1997.

[19] B. Razavi, “Design of Analog CMOS Integrated Circuits, ” McGraw-Hill, New York, 2001.

[20] R. E. Best, “Phase-Locked Loops, Fifth Ed., ” McGraw- Hill, New York, 2003.

[21] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design, 2nd Ed., ” Oxford, New York, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.247.159
論文開放下載的時間是 校外不公開

Your IP address is 3.149.247.159
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code