Responsive image
博碩士論文 etd-0704107-161301 詳細資訊
Title page for etd-0704107-161301
論文名稱
Title
罹患冠狀動脈瘤之川崎病童和敏感度反應蛋白C與白血球及高密度膽固醇相關
Serum High Sensitivity C-Reactive Protein, White Blood Cell Count, and High-Density Lipoprotein Cholesterol Levels are Associated with Coronary Artery Lesions in Kawasaki Disease
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
39
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-06
繳交日期
Date of Submission
2007-07-04
關鍵字
Keywords
高敏感度C反應性蛋白、川崎病、白血球和高密度膽固醇、冠狀動脈瘤
and high-density lipoprotein cholesterol, high sensitivity C-reactive protein, coronary artery lesion, WBC counts, Kawasaki disease
統計
Statistics
本論文已被瀏覽 5658 次,被下載 183
The thesis/dissertation has been browsed 5658 times, has been downloaded 183 times.
中文摘要
背景︰川崎病主要侵犯小於五歲的兒童,導致冠狀動脈損害,甚至造成心肌梗塞。從1976年後,在台灣已經造成無數小孩罹患川崎病。過去的研究顯示發炎對於動脈硬化佔有重要的角色。有許多的報導顯示高敏感度C反應性蛋白濃度、白血球和高密度膽固醇和冠狀動脈損害有密切的相關性。這個研究的主要目的就是利用發炎指數中高敏感度C反應性蛋白、白血球和高密度膽固醇來偵測罹患川崎病小孩中恢復期併發冠狀動脈損害時,血液數值變化。
方法和材料︰在2005年7月至2006年6月間,共有97位病患已經在2001年及2004年間已經診斷出川崎病的小孩參加實驗。這些病童在參加實驗一年前不同時間已經被診斷出罹患川崎病。診斷川崎病的基準根據1984年經過日本實驗委員會修正診斷標準。45個罹患川崎病併發冠狀動脈瘤的病人為第一組,52位罹患川崎病沒有併發冠狀動脈瘤的病人為第二組。另外選50位健康年紀和第一組和第二組相似的健康小孩當作第三組。實驗中的三組都記載他們參與實驗當時的白血球數值、收縮和舒張血壓,身體質量指數、年紀、性別、膽固醇、三酸甘油酯、高密度脂蛋白、低密度脂蛋白、血清中高敏感度C反應性蛋白濃度和經由超音波檢查後紀錄的冠狀動脈損害。我們分析罹患川崎病小孩,影響高敏感度C反應性蛋白濃度、白血球及高密度膽固醇和冠狀動脈損害之間的相關性。
結果︰第一組的兒童裡(平均值0.264 mg/dl)血中高敏感度C反應性蛋白濃度明顯的高於第二組(平均值0.155 mg/dl)和對照組第三組(平均值0.116 mg/dl),且p值是有意義的(p=0.006和p=0.017)。同樣的,第一組的小孩裡(平均值6,543.11/mm3)血中白血球數值明顯的高於第二組(平均值5,720.19/mm3)和對照組第三組(平均值5,611.27/mm3),且p值是有意義的(p=0.029和p=0.012)。而第一組的小孩裡(平均值41.42 mg/dl)血中高密度膽固醇數值低於第二組(平均值44.79 mg/dl)和對照組第三組(平均值46.58 mg/dl),且p值是有意義的( p=0.035和p=0.027)。血中高敏感度C反應性蛋白濃度和白血球數值之間有正相關性(r = 0.641, p < 0.05)。但血中高敏感度C反應性蛋白濃度和高密度膽固醇數值之間沒有相關性。
結論:我們的實驗證實了罹患川崎病併發冠狀動脈瘤的小孩在經過恢復期後與發炎反應相關。另外,發炎反應對於造成漸進的冠狀動脈瘤形成佔有一定的角色。這個實驗也證實利用血中高敏感度C反應性蛋白濃度、白血球和高密度膽固醇可用來預測罹患川崎病的小孩預期形成冠狀動脈瘤存在大小的一個因素。
Abstract
Background: Kawasaki disease (KD) affects mainly children younger than five years of age, leading to coronary artery lesions, and even to life-threatening myocardial infarctions. Since 1976, Kawasaki disease has occurred among thousands of children in Taiwan. Evidence suggests that inflammation plays a key role in the pathogenesis of atherosclerosis. Significant determinants of high sensitivity C-reactive protein (hs-CRP), which is a sensitive indicator of inflammation, as well as white blood cell (WBC) count, and high-density lipoprotein cholesterol (HDLc) and coronary artery lesion were identified. The relationships between these factors’ concentration and arterial lesion were likewise investigated and had reported. The aim of this study was to determine the serum levels of the hs-CRP, WBC count, and plasma HDLc levels in patients with later phase of KD.
Methods and Materials: From July 2005 to June 2006, 97 children with Kawasaki disease at least 1 year after diagnosis were recruited in this study. These participated children had been diagnosed as KD and collected at the interval of 2001 to 2004. Diagnosis was based on the 1984 revised by the KD Research Committee in Japan. The participants were grouped into 45 patients with KD and coronary aneurysms (Group I), 52 patients with KD and normal coronary arteries (Group II), and 50 healthy age-matched children (Control Group III). Their WBC count, systemic and diastolic blood pressures, body mass index, age, sex, fasting total cholesterol concentrations, triglyceride, high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol, serum hs-CRP levels, and coronary artery lesion by cardioechography were recorded and compared. The analytical differences between hs-CRP, WBC count, and plasma HDLc levels and the coronary artery events in KD were examined.
Results: Serum hs-CRP levels of Group I patients (mean 0.264 mg/dl) was significantly greater than that of Group II (mean 0.155 mg/dl, p=0.006) and Group III patients (mean 0.116 mg/dl, p =0.017). Similarly, the WBC count of Group I patients (mean 6,543.11/mm3) was significantly greater than that of Group II (mean 5,720.19/mm3, p=0.029), and Group III patients (mean 5,611.27/mm3, p =0.012). However, plasma HDLc levels of Group I patients (mean 41.42 mg/dl) was significantly lesser than that of Group II (mean 44.79 mg/dl, p=0.035), and Control Group III patients (mean 46.58 mg/dl, p=0.027). There was a positive association between hs-CRP and WBC count levels (r = 0.641, p < 0.05), but none between hs-CRP and plasma HDLc levels.
Conclusions: There is the possibility of ongoing low-grade inflammation late after the convalescent phase of Kawasaki disease in children with coronary aneurysms, which may have a role in increasing coronary artery dysfunction. These results also suggest that hs-CRP, WBC count, and plasma HDLc levels are useful parameters for predicting formation of coronary artery lesion even in children after onset of KD.
目次 Table of Contents
中文摘要------------------------------------------------- i
英文摘要------------------------------------------------iii
英文縮寫表----------------------------------------------v
論文內文:
序言(背景介紹)------------------------------------1
材料與方法----------------------------------------------5
結果--------------------------------------------------------8
討論------------------------------------------------------10
參考文獻------------------------------------------------16
表----------------------------------------------------------24
圖----------------------------------------------------------25
附錄-------------------------------------------------------30
參考文獻 References
1. Kawasaki T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children. Arerugi 1967;16:178-222.
2. Kim DS. Kawasaki disease. Yonsei Med J 2006;47:759-72.
3. Newburger JW and ER Fulton. Kawasaki disease. Curr Opin Pediatr 2004;16:508-14.
4. Bradley DJ, and MP Glode. Kawasaki disease. The mystery continues. West J Med 1998;168:23-9.
5. Hirose K, Nakamura Y, and H Yanagawa. Cardiac sequelae of Kawasaki disease in Japan over 10 years. Acta Paediatr Jpn 1995;37:667-71.
6. Chang LY, Chang IS, Lu CY et al. Kawasaki Disease Research Group. Epidemiologic features of Kawasaki disease in Taiwan. 1996-2002, Pediatr 2004;114:e678-82.
7. Lue HC, Philip S, Chen MR, Wang JK, and MH Wu. Surveillance of Kawasaki disease in Taiwan and review of the literature. Acta Paediatr Taiwan 2004;45:8-14.
8. Huang TY. Kawasaki disease. Acta Paediatr Taiwan 2004;45:6-7.
9. Newburger JW, Takahashi M, Gerber MA et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Statement for Health Professionals From the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatr 2004;114:1708-1733.
10. Kato H, Sugimura T, Akagi T, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 1996;94:1379-1385.
11. Dajani AS, Taubert KA, Gerber MA, et al. Diagnosis and therapy of Kawasaki disease in children. Circulation 1993;87:1776-1780.
12. Mitani Y, Sawada H, Hayakawa H et al. Elevated levels of high-sensitivity C-reactive protein and serum amyloid-A late after Kawasaki disease: association between inflammation and late coronary sequelae in Kawasaki disease. Circulation 2005;111:38-43.
13. Suzuki A, Kamiya T, Arakaki Y, et al. Fate of coronary arterial aneurysms in Kawasaki disease. Am J Cardiol 1994;74:822-4.
14. Burns JC, Shike H, Gordon JB, et al. Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol 1996;28:253-7.
15. Kato H, Ichinose E, Yoshioka F, et al. Fate of coronary aneurysms in Kawasaki disease: serial coronary angiography and long-term follow-up study. Am J Cardiol 1982;94:1758-66.
16. Ahn SY, Jang GC, Shin JS, Shin KM, and DS Kin. Tumor necrosis factor-alpha levels and promoter polymorphism in patients with Kawasaki disease in Korea. Yonsei Med J 2003;44:1021-6.
17. Mitani Y, Okuda Y, Shimpo H, et al. Impaired endothelial function in epicardial coronary arteries after Kawasaki disease. Circulation 1997; 96: 454–461.
18. Yamakawa R, Ishii M, Sugimura T et al. Coronary endothelial dysfunction after Kawasaki disease: evaluation by intracoronary injection of acetylcholine. J Am Coll Cardiol 1998; 31: 1074–1080.
19. Suzuki A, Miyagawa-Tomita S, Komatsu K at al. Active remodeling of the coronary arterial lesions in the late phase of Kawasaki disease: immunohistochemical study. Circulation 2000;101:2935-41.
20. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–126.
21. Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868–874.
22. Rowley AH, Shulman ST, Spike BT, Mask CA, and SC Baker. Oligoclonal IgA response in the vascular wall in acute Kawasaki disease. J Immunol 2001;166 :1334 –1343.
23. Brown TJ, Crawford SE, Cornwall ML et al. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis 2001;184 :940 –943.
24. Rowley AH, Shulman ST, Mask CA, et al. IgA plasma cell infiltration of proximal respiratory tract, pancreas, kidney, and coronary artery in acute Kawasaki disease. J Infect Dis 2000;182 :1183 –1191.
25. Takeshita S, Tokutomi T, Kawase H et al. Elevated serum levels of matrix metalloproteinase-9 (MMP-9) in Kawasaki disease. Clin Exp Immunol 2001;125 :340 –344.
26. Yasukawa K, Terai M, Shulman ST et al. Systemic production of vascular endothelial growth factor and fms-like tyrosine kinase-1 receptor in acute Kawasaki disease. Circulation 2002;105 :766 –769.
27. Maeno N, Takei S, Masuda K et al. Increased serum levels of vascular endothelial growth factor in Kawasaki disease. Pediatr Res 1998;44 :596 –599.
28. Asano T and S Ogawa. Expression of monocyte chemoattractant protein-1 in Kawasaki disease: the anti-inflammatory effect of gamma globulin therapy. Scand J Immunol 2000;51:98 –103.
29. Ohno T, Igarashi H, Inoue K et al. Serum vascular endothelial growth factor: a new predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr 2000;159:424-9.
30. Eberhard BA, Andersson U, Laxer RM, Rose V, and ED Silverman. Evaluation of the cytokine response in Kawasaki disease. Pediatr Infect Dis J 1995;14:199 –203.
31. Inoue Y, Kato M, Kobayashi T et al. Increased circulating granulocyte colony-stimulating factor in acute Kawasaki disease. Pediatr Int 1999;41:330-3.
32. Lin CY, Lin CC, Hwang B, and B Chiang. Serial changes of serum interleukin-6, interleukin-8, and tumor necrosis factor alpha among patients with Kawasaki disease. J Pediatr 1992;121 :924 –926.
33. Ohno T, Yuge T, Kariyazono H, et al. Serum hepatocyte growth factor combined with vascular endothelial growth factor as a predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr 2002;161 :105 –111.
34. Cheung YF, Ho MH, Tam SC, and TC Yung. Increased high sensitivity C reactive protein concentrations and increased arterial stiffness in children with a history of Kawasaki disease. Heart 2004;90:1281-5.
35. Gomes MC. C-reactive protein: a new golden marker of cardiovascular risk. Rev Port Cardiol 2002;21:1329-46.
36. Yeh ET. High-sensitivity C-reactive protein as a risk assessment tool for cardiovascular disease. Clin Cardiol 2005;28:408-12.
37. Fichtlscherer S, Rosenberger G, Walter DH et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000;102:1000-6.
38. Calabro P, Willerson JT and ET Yeh. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 2003; 108: 1930-1932.
39. Yasojima K, Schwab C, McGeer EG, and PL McGeer. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol 2001; 158: 1039-1051.
40. Kobayashi S, Inoue N, Ohashi Y, et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol 2003; 23: 1398-1404.
41. Jabs WJ, Logering BA, Gerke P et al. The kidney as a second site of human C-reactive protein formation in vivo. Eur J Immunol 2003; 33: 152-161.
42. Yasojima K, Schwab C, McGeer EG and PL McGeer. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res 2000; 887: 80-89.
43. Dong Q and JR Wright. Expression of C-reactive protein by alveolar macrophages. J Immunol 1996; 156: 4815-4820.
44. Yudkin JS, Kumari M, Humphries SE and V Mohamed-Ali. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 2000; 148: 209-214.
45. Hoffman M, Blum A, Baruch R, Kaplan E and M Benjamin. Leukocytes and coronary heart disease. Atherosclerosis 2004;172:1-6.
46. Brown DW, Giles WH and JB Croft. White blood cell count: an independent predictor of coronary heart disease mortality among a national cohort. J Clin Epidermiology 2001;54:316-22.
47. Haim M, Boyko V, Goldbourt U, Battler A and S Behar. Predictive value of elevated white blood cell count in patients with preexisting coronary heart disease: the Bezafibrate Infarction Prevention Study. Arch Intern Med 2004;164:433-9.
48. Suzuki H, Noda E, Miyawaki M et al. Serum levels of neutrophil activation cytokines in Kawasaki disease. Pediatr Int 2001;43:115-9.
49. Ariga S, Koga M, Takahashi M et al. Maturation of macrophages from peripheral blood monocytes in Kawasaki disease: immunocytochemical and immunoelectron microscopic study. Pathol Int 2001;51:257-63.
50. Hamamichi Y, Ichida F, Yu X et al. Neutrophils and mononuclear cells express vascular endothelial growth factor in acute Kawasaki disease: its possible role in progression of coronary artery lesions. Pediatr Res 2001;49:74-80.
51. Koga M, Ishihara T, Takahashi M, Umezawa Y and S Furukawa. Activation of peripheral blood monocytes and macrophages in Kawasaki disease: ultrastructural and immunocytochemical investigation. Pathol Int 1998;48:512-7.
52. Prentice RL, Szatrowski TP, Kato H et al. Leukocyte counts and cerebrovascular disease. J Chronic Dis 1982;35:703-14.
53. Spodick DH. Inflammation and the onset of myocardial infarction. Ann Intern Med 1985;102:699-702.
54. Ohno T, Yuge T, Kariyazono H, Igarashi et al. Serum hepatocyte growth factor combined with vascular endothelial growth factor as a predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr 2002;161:105-11.
55. Hui-Yuen JS, Duong TT and RS Yeung. TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J Immunol 2006;176:6294-301.
56. Hirao J, Hibi S, Andoh T and T Ichimura. High levels of circulating interleukin-4 and interleukin-10 in Kawasaki disease. Int Arch Allergy Immunol 1997;112:152-6.
57. Asano T and S Ogawa. Expression of IL-8 in Kawasaki disease. Clin Exp Immunol 2000;122:514-9.
58. Jibiki T, Terai M and Y Kohno. High concentrations of interleukin-8 and monocyte chemoattractant protein-1 in urine of patients with acute Kawasaki disease. Eur J Pediatr 2004;163:749-50.
59. Okada T, Harada K and M Okuni. Serum HDL-cholesterol and lipoprotein fraction in Kawasaki disease. Jpn Circ J 1982;46:1039-44.
60. Cabana VG, Gidding SS, Getz GS et al. Serum amyloid A and high density lipoprotein participate in the acute phase response of Kawasaki disease. Pediatr Res 1997;42:651-5.
61. Salo E, Pesonen E and J Viikari. Serum cholesterol levels during and after Kawasaki disease. J Pediatr 1991;119:557-61.
62. Newburger JW, Burns JC, Beiser AS and J Loscalzo. Altered lipid profile after Kawasaki syndrome. Circulation 1991;84:625-31.
63. Berk BC, Weintraub WS and RW Alexander. Elevation of C-reactive protein in “active” coronary artery disease. Am J Cardiol 1990;65:168-172.
64. Danesh J, Wheeler JG, Hirschfield GM et al. C-reactive protein and other circulation markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350:1487-97.
65. Inoue N. Vascular C-reactive protein in the pathogenesis of coronary artery disease: role of vascular inflammation and oxidative stress. Cardiovasc Hematol Disord Drug Targets 2006;6:227-31.
66. Schlager O, Exner M, Mlekusch W et al. C-reactive protein predicts future cardiovascular events in patients with carotid stenosis. Stroke 2007;38:1263-8.
67. Goldschmidt-Clermont PJ, Creager MA, Losordo DW et al. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation 2005;112:3348-53.
68. Vane JR, Anggard EE and RM Botting. Regulatory functions of the vascular endothelium. N Engl J Med 1990;323:27-36.
69. Pasceri V, Willerson JT and ET Yeh. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165-2168.
70. Bhagat K, Moss R, Collier J et al. Endothelial “stunning” following a brief exposure to endotoxin: a mechanism to link infection and infarction? Cardiovasc Res 1996;32:822-829.
71. Redl H. Hammerschmidt ED and G Schlag. Augmentation by platelets of granulocyte aggregation in response to chemotaxins: studies utilizing an improved cell preparation technique. Blood 1983;61:125-31.
72. Boogaerts MA, Yamada O, Jacob HS et al. Enhancement of granulocyte adherence and granulocyte-induced cytotoxicity by platelet release products. Proc Natl Acad Sci USA 1982;79:7019-24.
73. Prasad K. C-reactive protein increases oxygen radical generation by neutrophils. J Cardiovasc Pharmacol Ther 2004;9:203-9.
74. Dinarello CA. The biological properities of interleukin-1. Eur Cytokine Netw 1994;5:517-31.
75. mantovani A, Bussolino F and E Dejana. Cytokine regulation of endothelial cell function. FASEB J 1992;6:2591-9.
76. Sica A, Matsushima K, Van Damme J et al. IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells. Immunology 1990;69:548-53.
77. Neuman FJ, Ott I, Marx N et al. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte proagulant activity. Arterioscler Throm Vasc Biol 1997;17:3399-405.
78. Molad Y, Haines KA, Anderson DC, Buyon JP and BN Cronstein. Immunocomplexes stimulate different signaling events to chemoattractants in the neutrophil and regulate L-selectin and
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.244.83
論文開放下載的時間是 校外不公開

Your IP address is 3.143.244.83
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code