Responsive image
博碩士論文 etd-0704107-190406 詳細資訊
Title page for etd-0704107-190406
論文名稱
Title
有機光電元件之時間解析光致電流顯微術
Time-resolved optical beam induced current mapping of organic photonic device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-20
繳交日期
Date of Submission
2007-07-04
關鍵字
Keywords
光致電流、有機元件
obic, tof
統計
Statistics
本論文已被瀏覽 5652 次,被下載 2037
The thesis/dissertation has been browsed 5652 times, has been downloaded 2037 times.
中文摘要
光致電流顯微術已經被廣泛的應用在半導體元件及積體電路上,近而我們創新應用於有機光電元件的量測上,在本實驗中我們用來量測有機光電元件的反應時間,在極短的反應時間裡,我們可以擁有很高的空間解析度,透過雷射、雷射共焦掃描顯微鏡和RF Lock-in Amplifier等儀器,以及利用飛行時間式電荷傳導量測系統(Time-of-Flight),除了可以量測之前無機半導體元件的特性外,我們也已經成功的量測計算出有機半導體元件的漂移速率(drift velocity),對於有機元件的量測技術而言,是一大突破。
本實驗所使用的雷射是經由共焦掃描顯微鏡後打在樣品的主動區上,所以激發的範圍由掃描區域大小決定,不同於以往的量測方法,我們所求得半導體的漂移速率具有面的特性,可以對半導體上一整個面作時間的解析,藉此瞭解載子在半導體上的傳輸特性。
Abstract
We have successfully implemented the time-resolved technique at frequency domain on a laser scanning microscope. The method is implemented via interfacing a lock-in amplifier with the laser scanning microscope and is used to investigate organic photonic devices (OPD). The available modalities include electroluminescence and optical beam induced current. In this way, temporal response of a device can be investigated at high spatial resolution.
Despite of its now limited role in flat panel display, OPD presents as a versatile material with numerous potentials, with solar power panel as the most noted one recently. The investigation conducted enables us to better understand the fundamental dynamics of carriers unique to OPDs.
目次 Table of Contents
第一章 實驗導論

第二章 時間解析之光致電流原理
2.1 光致電流的原理
2.2 DC OBIC, RF OBIC & Time-resolved OBIC
2.3 RF訊號量測原理
2.4 飛行時間式電荷傳導系統原理

第三章 實驗架設與儀器介紹
3.1 OBIC光路與電子線路圖
3.2雷射光源
3.3共焦掃描顯微系統
3.4低噪音前至放大器(Low-noise Preamplifier)
3.5鎖相放大器(Lock-in Amplifier)

第四章 實驗結果及數據分析
4.1 實驗簡介
第一部份:更改chopper頻率以觀察solar cell相位之
變化
4.2樣品介紹
4.3 DC OBIC影像
4.4 Time-Resolved OBIC影像

第二部份:固定chopper頻率但更改偏壓以觀察solar cell相位之變化
4.5樣品介紹
4.6 DC OBIC影像
4.7 Time-resolved OBIC影像

第五章 結論與未來展望
5.1 結論
5.2 未來展望
參考文獻 References
[1] T.Wilson and C. J. R.Sheppard, Theory and Practice of Scanning Optical Microscopy, Academic Press, London(1984).
[2] P.D. Pester and T. Wilson, “Photoluminescence and Optical Beam Induced Current Imaging of Defects”,SPIE, vol.1028 Scanning Imaging(1988)
[3] P.D. Pester and T. Wilson, “Time-dependent theory of optical-beam-induced current imaging of defects in semiconducoters”, J. Appl. Phys., 64(3), P1131-1135(1988)
[4] T. Wilson and E.M. McCabe, “Distribution of charge carriersgenerated in semiconductor by a focused convergent lightbeam”,J.Appl. Phys., P2638-264259(8)(1986)
[5] S .Takasu,Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis), Application & Research Center, JEOL Ltd
[6] Xu. C and W. Denk, “Two-photon optical beam induced current imaging through the backside of integrated circuits”, Apply. Phys. Lett., Vol74, 2578(1997)
[7] F.-J. Kao, M.-K. Huang and Y.-S. Wang, “Two-photon optical beam induced vurrent imaging of indium gallium nitride blue light-emitting diodes” OPTICS LETTERS, Vol.24, No.20, P1407-1409(1999)
[8] G. D. Reid and K. Wynne, Ultrafast Laser Technology and Spectroscopy, Encyclopedia of Analytical Chemistry, P13644-13670(2000)
[9] F.-J. Kao, J.-C. Chen, S.-C. Shih and A. Wei, “Optical beam induced current microscopy at DC and Radio Frequency “, Optics Communication, Optics Communication, in press.
[10] L.Reggiani, C. Canali, F. Nava, and G. Ottaviani, “Hole drift velocity in germanium”, PHYSICAL REVIEW B, Vol.16, NO.6, P2781-2791 (1977)
[11] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium”, PHYSICAL REVIEW B, Vol.24, NO.2, P1014-1026 (1981)
[12] T. Wilson and E.M. McCabe, "Theory of optical beam induced current images of defects in semiconductors", J. Appl. Phys. 61(1), pp191-195,1987


[1] S.M. SZE, “SEMICONDUCTOR DEVICE Physics and Technology”, Murray Hill, New Jersey, Chapter 3, 70-83
[2] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Fourth edition
[3] 黃茂闊, ’’雙光子共焦顯微鏡與顯微光譜之應用:氮化鎵銦發光二極體的光致電流影像和顯微光譜”, 國立中山大學物理研究所碩士論文, 2000
[4] 施勝志, “超快雷射在顯微影像上得應用:高頻光致電流與二倍頻顯微技術”, 國立中山大學物理研究所碩士論文, 2002
[5] 楊德振, “超快雷射與雷射掃描顯微術之應用:高頻光致電流及雙光子紫外螢光成像”, 國立中山大學物理研究所碩士論文, 2004
[6] S .Takasu,Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis), Application & Research Center, JEOL Ltd
[7] F.-J. Kao, J.-C. Chen, S.-C. Shih and A. Wei, “Optical beam induced current microscopy at DC and Radio Frequency “, Optics Communication, Optics Communication, in press.
[8] J. C. Ruch and G. S. Kino, “Measurement of the velocity-field characteristic of Gallium Arsenide”, APPLIED PHYSICS LETTERS, Vol.10, No.2, P40-42 (1967)
[9] T. W. Sigmon and J. F. Gibbons, “Diffusivity of electrons and hole in silicon”, APPLIED PHYSICS LETTERS, Vol.15, No.10, P320-322 (1969)
[10] C. B. Norris and J. F. Gibbons, “Measure of High-Field Carrier Drift Velocities in Silicon by Time-of-Flight Technique”, IEEE Transactions on electron devices, Vol. ED-14, No.1, P38-43 (1967)
[11] A. Neukermans and G. S. Kino, “Measurement of the Electron Velocity-Field Characteristics in Germanium Using a New Technique”, PHYSICAL REVIEW B, Vol7, No.6, P1973-2703 (1973)
[12] 吳忠幟, 洪文誼, “利用飛行時間式電荷傳導測量系統來探討”, 台大工程學刊, 第八十八期, P61-66, 2003
[13] B. Chen and S. Liu, “Measurement of electron/hole mobility in organic/polymeric thin films using modified time-of-flight apparatus,” Synth. Met., Vol. 91, December 1997, pp. 169−171.
[14] G. Ottaviani , L.Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, “Hole drift velocity in silicon”, PHYSICAL REVIEW B, Vol.12, No.8, P3318-3329 (1975)
[15] C. Canali , C. Jacoboni, F. Nava , G. Ottaviani , L.Reggiani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon”, PHYSICAL REVIEW B, Vol.12, No.4, P2265-2284 (1975)


[1] 施勝志, “超快雷射在顯微影像上得應用:高頻光致電流與二倍頻顯微技術”, 國立中山大學物理研究所碩士論文, 2002
[2] E. Oran Brigham, The Fast Fourier transform, Prentice Hall Inc., Cahp5, (1974)
[3] G. Ottaviani , L.Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, “Hole drift velocity in silicon”, PHYSICAL REVIEW B, Vol.12, No.8, P3318-3329 (1975)
[4] C. Canali , C. Jacoboni, F. Nava , G. Ottaviani , L.Reggiani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon”, PHYSICAL REVIEW B, Vol.12, No.4, P2265-2284 (1975)
[5] L.Reggiani, C. Canali, F. Nava, and G. Ottaviani, “Hole drift velocity in germanium”, PHYSICAL REVIEW B, Vol.16, NO.6, P2781-2791 (1977)
[6] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium”, PHYSICAL REVIEW B, Vol.24, NO.2, P1014-1026 (1981)


[1] “OLED有機電激發光材料與元件” 陳金鑫、黃孝文著。
[2] 廖育麒,”時間解析之光致電流顯微術”國立中山大學光電工程研究所碩士論文,2006年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code