Responsive image
博碩士論文 etd-0704108-105354 詳細資訊
Title page for etd-0704108-105354
論文名稱
Title
特殊保護系統運轉之機率風險評估及其設計改善
Probabilistic Risk Assessment of Special Protection Systems Operations and Design Refinement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-06
繳交日期
Date of Submission
2008-07-04
關鍵字
Keywords
靈敏度分析、區間理論、風險降低效益、可靠度、防衛計畫、不確定性、特殊保護系統、電力壅塞、輔助服務、電力市場、機率風險評估
special protection system, uncertainty, interval theory, risk reduction worth, defense plan, ancillary service, probabilistic risk assessment, power market, congestion, reliability, sensitivity analysis
統計
Statistics
本論文已被瀏覽 5731 次,被下載 2323
The thesis/dissertation has been browsed 5731 times, has been downloaded 2323 times.
中文摘要
特殊保護系統(SPS)或電力系統防衛計畫已廣泛地建構於世界各地之電力網路,用以防止大停電事故發生、提升系統供電可靠度。當規劃設計特殊保護系統之架構及控制策略時,確認此架構策略滿足可靠度規範要求是重要考量因素之一。當系統偵測到預先定義動作條件,而特殊保護系統應該動作而動作失靈,或者不該動作卻誤動作時,將導致系統嚴重後果及重大損失,因此特殊保護系統可靠度之定量評估是重要且必要的。在可靠度定量評估中,因使用模型及輸入參數存在著不確定性,若僅使用單點數值的參數作分析評估,可能得到一個錯誤或誤導的結果。而當重新檢視一個特殊保護系統機制,且發現既有結構可能需要作適度之修改時,靈敏度分析可協助確認有效改善可靠度之最重要關鍵元件。
本論文利用區間理論分析參數不確定性對特殊保護系統可靠度分析結果之影響;利用風險降低效益指標進行靈敏度分析以確定影響可靠度之關鍵性因子;應用機率風險評估法進行可靠度改善之探討分析,以提供特殊保護系統決策機制之設計改善策略。經由台電既有之特殊保護系統實際進行評估分析,顯示本論文提出之設計改善程序及方法具適當性及實用性。
隨著電力工業解制、自由化時代的來臨,電力事業正面臨前所未有之壓力,各電力公司無不竭盡心力利用現有之電力設備,達到最大之電力供應及營運效益。特殊保護系統通常被視為達成上述目標經濟有效的方法。由於特殊保護系統的運轉可能影響系統運轉策略,導致競爭市場電價及輔助服務等成本的改變;另外對整個電力系統的供電安全,以及特殊保護系統本身運轉的風險都需要加以考慮。本論文亦探討特殊保護系統在電力市場運轉時之風險效益評估,可提供系統規劃及運轉人員評估特殊保護系統使用參考,以有效解決系統輸電網路電力壅塞或供電可靠度問題。
Abstract
In order to prevent power system blackout, and enhance system reliability, various forms of special protection systems (SPS) and defense plans have been implemented by utilities around the world. One of the main concerns in the design of an SPS is to assure whether the system could fit with the reliability specification requirements. The failure of SPS to detect the defined conditions and carry out the required actions, or to take unnecessary actions, could lead to serious and costly consequences. Thus, a quantitative reliability assessment for SPS is important and necessary. Using a single point value for the parameter to evaluate the reliability of SPS might give incomplete information about the system reliability due to the uncertainty of reliability model and input data. When a review study suggests that some modifications of the existing scheme are necessary, the sensitivity analysis techniques could provide the tools to do this investigation to identify the most significant components that have essential effects on the reliability of the SPS.
In this dissertation, by incorporating an interval theory, a risk reduction worth importance concept, and a probabilistic risk-based index, a procedure is proposed to conduct parameter uncertainty analysis, identify critical factors in the reliability model, perform probabilistic risk assessments (PRA) and determine a better option for the refinement of the studied SPS decision process logic module. One of the existing SPSs of Taipower systems is used to illustrate the practicability and appropriation of the proposed design refinement procedure.
With the advent of deregulation in the power industry, utilities have experienced a great pressure to fully utilize their current facilities to the maximum level. SPSs are often considered as a cost effective way in achieving this goal. This dissertation also presents a framework for quantitative assessment of the benefits and risks due to SPS implementation. Changes in energy, spinning reserve and customer interruption costs resulting from SPS operations are evaluated and risks of SPS operations and system security are assessed. The proposed methodologies are useful for power system planners and operators to evaluate the value and effectiveness of SPS for the remedy of transmission congestion and reliability problems.
目次 Table of Contents
中文論文審定書 --------------------------------------------------------------------------- I
英文論文審定書 --------------------------------------------------------------------------- II
謝詞 ------------------------------------------------------------------------------------------ III
中文摘要 ------------------------------------------------------------------------------------ IV
Abstract -------------------------------------------------------------------------------------- VI
Acronyms ------------------------------------------------------------------------------------ VIII
Notations ------------------------------------------------------------------------------------- X
Contents -------------------------------------------------------------------------------------- XII
List of Tables -------------------------------------------------------------------------------- XVI
List of Figures ------------------------------------------------------------------------------ XVII

Chapter 1 Introduction -------------------------------------------------------------------- 1
1.1 Introduction of SPS ------------------------------------------------------------------ 4
1.1.1 Definition ----------------------------------------------------------------------- 4
1.1.2 General Structure -------------------------------------------------------------- 4
1.1.3 Purposes ------------------------------------------------------------------------- 7
1.1.4 Classifications ------------------------------------------------------------------ 9
1.2 Overview of SPS in the World ----------------------------------------------------- 10
1.3 SPS Cases in Taipower -------------------------------------------------------------- 13
1.4 SPS Design Procedure and Requirements ---------------------------------------- 16
1.4.1 Design Procedure -------------------------------------------------------------- 16
1.4.2 Design Requirements ---------------------------------------------------------- 20
1.5 Literature Review of SPS Reliability and Benefit Assessment ---------------- 21
1.6 Contributions of the Study ---------------------------------------------------------- 27
1.7 Structure of the Dissertation -------------------------------------------------------- 27
Chapter 2 Reliability Assessments of Safety Instrumented Functions ----------- 29
2.1 Reliability Indices -------------------------------------------------------------------- 29
2.2 Reliability Assessment Methods --------------------------------------------------- 30
2.2.1 Reliability Block Diagram (RBD) Method --------------------------------- 30
2.2.2 Fault Tree Analysis (FTA) ---------------------------------------------------- 32
2.2.3 Markov Modeling -------------------------------------------------------------- 35
2.2.4 Monte Carlo (MC) Simulations ---------------------------------------------- 37
2.2.5 Numerical Examples ---------------------------------------------------------- 38
2.2.6 Discussions and Recommendations ----------------------------------------- 42
2.3 Uncertainty Analysis ----------------------------------------------------------------- 44
2.3.1 Statistical Uncertainty Analysis ---------------------------------------------- 45
2.3.2 Interval Theory ----------------------------------------------------------------- 45
2.3.3 Numerical Examples ---------------------------------------------------------- 46
2.4 Sensitivity Analysis ------------------------------------------------------------------ 47
2.4.1 Statistical Sensitivity Analysis ----------------------------------------------- 47
2.4.2 Risk Reduction Worth (RRW) Important Analysis ------------------------ 49
2.4.3 Wide Range Method (WRM) ------------------------------------------------- 50
2.4.4 Numerical Examples ---------------------------------------------------------- 50
2.5 Summary and Discussions ---------------------------------------------------------- 51
Chapter 3 Risk Informed SPS Design Refinement ----------------------------------- 53
3.1 Probabilistic Risk Assessment (PRA) --------------------------------------------- 53
3.1.1 Introduction --------------------------------------------------------------------- 53
3.1.2 PRA Applications to SPS Design -------------------------------------------- 54
3.2 SPS Design Refinement Procedures ----------------------------------------------- 57
3.3 Discussions --------------------------------------------------------------------------- 58
Chapter 4 Benefit Assessment of SPS Applications in Deregulated Environment --------------------------------------------------------------- 60
4.1 Benefit Assessment in Energy Market -------------------------------------------- 61
4.2 Benefit Assessment in Ancillary Service Market -------------------------------- 62
4.3 Benefit Evaluation of Network Security ------------------------------------------ 63
4.4 Impacts and Risks of SPS Operations --------------------------------------------- 66
4.5 Discussions --------------------------------------------------------------------------- 66
Chapter 5 Numerical Results ------------------------------------------------------------- 68
5.1 Description of the Studied SPS ---------------------------------------------------- 68
5.2 Design Refinement ------------------------------------------------------------------- 71
5.2.1 Reliability Evaluation Results ------------------------------------------------ 71
5.2.2 Uncertainty Analysis Results ------------------------------------------------- 73
5.2.3 Sensitivity Analyses Results -------------------------------------------------- 74
5.2.4 Reliability Indices of the Refined Systems --------------------------------- 76
5.2.5 Dongshan-SPS Probabilistic Risk Assessment Results ------------------- 78
5.2.6 Discussions --------------------------------------------------------------------- 80
5.3 Operational Benefits Assessment -------------------------------------------------- 81
5.3.1 Benefits Obtainable in a Vertically Integrated Utility Industry ---------- 84
5.3.2 Benefits Obtainable in Deregulated Power Markets ---------------------- 84
5.3.3 Benefits in Transmission Security Risk Reduction ------------------------ 86
5.3.4 Risk of Dongshan-SPS operations ------------------------------------------- 87
5.3.5 Total Benefits of Dongshan-SPS Deployment ----------------------------- 88
5.3.6 Discussions --------------------------------------------------------------------- 89
Chapter 6 Conclusions and Future Works -------------------------------------------- 90
6.1 Conclusions --------------------------------------------------------------------------- 90
6.2 Suggested Future Works ------------------------------------------------------------ 92

References ------------------------------------------------------------------------------------ 95
簡歷 ------------------------------------------------------------------------------------------- 105
參考文獻 References
[1] C. H. Lee and S. C. Hsieh, “Lessons learned from the power outages on 29 July and 21 September 1999 in Taiwan,” IEE Proc.-Gener. Transm. Distrib., Vol. 149, No. 5, pp. 543-549, Sep. 2002.
[2] T. Y. Hsiao, C. N. Lu, Y. H. Liu, C. L. Cheng, and B. S. Chang, “Safety net design and implementation in Taiwan power system,” IEE Proceedings of the 5th International Conference on Power System Management and Control (PSMC), pp. 41-46, 17-19 Apr. 2002.
[3] P. Cote and M. Lacroix, “Benefits of special protection systems in competitive market,” proceedings of IEEE PICA 2001, Sydney, Australia, pp. 192-195, May 2001.
[4] P. M. Anderson and B. K. LeReverend, “Industry experience with special protection schemes,” IEEE Trans. Power Systems, Vol. 11, No. 3, pp. 1166-1179, Aug. 1996.
[5] NERC Planning Standards, North American Electric Reliability Council, Sep. 1997. [Online]. Available: http://www.nerc.com
[6] CIGRE Task Force 38.02.19 (Convener: D. Karlsson), “System protection schemes in power networks,” 2001.
[7] J. D. McCalley and W. Fu, “Reliability of special protection systems,” IEEE Trans. Power Systems, Vol. 14, No. 4, pp. 1400-1406, Nov. 1999.
[8] P. Kundur, Power System Stability and Control, McGraw-Hill, 1993.
[9] C. W. Tayor, Power System Voltage Stability, McGraw-Hill, 1994.
[10] Special Protection System Criteria, Northeast Power Coordinating Council (NPCC), Nov. 14, 2002.
[11] H. Li, G. W. Rosenwald, J. Jung, and C. C. Liu, “Strategic power infrastructure defense,” Proceedings of the IEEE, Vol. 93, No. 5, pp. 918-933, May 2005.
[12] A. Bianco, A. R. C. Carvalho, V. X. Filho, N. Martins and L. A. S. Pilotto, “Brazilian defense plan against extreme contingencies,” Proceedings of the 2001 Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 15-19 July 2001.
[13] P. Denys, C. Counan, L. Hossenlopp, and C. Holweck, “Measurement of voltage phase for the French future defence plan against losses of synchronism,” IEEE Trans. Power Del., Vol. 7, No. 1, pp. 62-69, Jan. 1992.
[14] O. Faucon and L. Dousset, “Coordinated defense plan protects against transient instabilities,” IEEE Comput. Appl. Power, Vol. 10, No. 3, pp. 22-26, Jul. 1997.
[15] G. Trudel, S. Bernard, and G. Scott, “Hydro-Quebec’s defence plan against extreme contingencies,” IEEE Trans. Power Systems, Vol. 14, No. 3, pp. 958-966, Aug. 1999.
[16] P. Cote, S.-P. Cote, and M. Lacroix, “Programmable load shedding systems Hydro-Quebec’s experience,” Proceedings of IEEE Power Engineering Soc. Summer Meeting, Vol. 2, pp. 818-823 , 2001.
[17] D. R. Cowbourne and P. M. Murphy, “The application of system control centre computer assisted special protection systems in Ontario Hydro,” Proceedings of 4th Int. Conf. Developments in Power Protection, pp. 156-161, 1989.
[18] V. C. Nikolaidis and C. D. Vournas, “Design strategies for load-shedding schemes against voltage collapse in the Hellenic system,” IEEE Trans. Power Systems, Vol. 23, No. 2, pp. 582-591, May 2008.
[19] Y. Xue, “Towards space-time cooperative defence framework against blackouts in China,” Proceedings of IEEE 2007 Power Engineering Society General Meeting, 24-28 Jun. 2007.
[20] W. Pimjaipong, T. Junrussameevilai, and N. Maneerat, “Blackout prevention plan – the stability, reliability and security enhancement in Thailand Power Grid,” IEEE/PES Transmission and Distribution Conference & Exhibition, Asia and Pacific Dalian, China, 2005.
[21] H. Ghoudjebaklou, A. Tunnicliffe, and R. Dey, “System protection scheme for the DC link between Tasmania and the Mainland Australia,” Proceedings of IEEE/PES Transmission and Distribution Conference & Exhibition, Asia and Pacific Dalian, China, 2005.
[22] J. Hsu, K. Cocco, T. Isham, and B. Kokanos, “Use of special protection systems for major Palo Verde network hub congestion management in the U.S. southwest,” International Conference on Power System Technology, 2006.
[23] J. Hsu, G. DeShazo, and W. Wong, “Use of special protection systems to overcome power congestion in the western united states,” Proceedings of IEEE Power System Technology 2002, pp.1339-1343, Oct. 2002.
[24] MAAC Special Protection System Criteria, Mid Atlantic Area Council, Jun. 29, 2000.
[25] L. Wang and F. Howell, Final Report on Power System Analysis for Special Protection System Study, prepared by Powertech Labs Inc. for Taiwan Power Company, Nov. 2003.
[26] Y. J. Wang, C. W. Liu, L. D. Sue, and W. K. Liu, “A remedial control scheme protects against transient instabilities based on phasor measurement units (PMUs) –A case study,” IEEE PES Summer Meeting, Vol. 2, pp. 1191-1195, 2000.
[27] S. E. Chien, I T. Cheng, Y. T. Chou, and C. W. Liu, “Automation of contingency analysis for special protection systems in Taiwan power system,” Proceedings of IEEE ISAP 2007, Kaohsiung, Taiwan, 4-8 Nov. 2007.
[28] T. Y. Hsiao, C. A. Hsieh, and C. N. Lu, “A risk-based contingency selection method for SPS applications,” IEEE Trans. Power Systems, Vol. 21, No. 2, pp. 1009-1010, May 2006.
[29] W. R. Lachs, “A new horizon for system protection schemes,” IEEE Trans. Power Systems, Vol. 18, No. 1, pp. 334-338, Feb. 2003.
[30] P. M. Anderson, Power System Protection, New York, McGraw-Hill, IEEE Press, c1999.
[31] WECC, “Information required to assess the reliability of a RAS, procedure to submit a RAS for assessment,” Western Electricity Coordinating Council. [Online]. Available: http://www.wecc.biz
[32] System Disturbances, 1986-1995, North American Electric Reliability Council (NERC).
[33] W. Fu, S. Zhao, J. D. McCalley, V. Vittal, and N. Abi-Samra, “Risk assessment for special protection systems,” IEEE Trans. Power Systems, Vol. 17, No. 1, pp. 63-72, Feb. 2002.
[34] ISA-TR84.00.02-2002, “Safety Instrumented Functions (SIF) – Safety Integrity Level (SIL) Evaluation Techniques,” Parts 1-3, The Instrumentation, Systems, and Automation Society (ISA), Approved 17 June, 2002.
[35] P. C. K. Lau, M. S. Grover, and W. H. Tanaka, “Reliability assessment of special protection systems,” CIGRE paper 3A-11, presented at the CIGRE Symposium on Electric Power System Reliability, Montreal, Sep. 16-18, 1991.
[36] W. J. Galyean, R. D. Fowler, J. A. Close, and M. E. Donley, “Case study: reliability of the INEL-site power system,” IEEE Trans. Reliability, Vol. 38, No. 3, pp. 279-284, Aug. 1989.
[37] G. Maggio, “Space shuttle probabilistic risk assessment: methodology & application,” Proceedings of 1996 Annual Reliability and Maintainability Symposium, pp. 121-132, 1996.
[38] J. D. Andrews and C. A. Ericson II, “Fault tree and Markov analysis applied to various design complexities,” Proceedings of the 18th International System Safety Conf. [Online]. Available: http://www.fault-tree.net
[39] R. Billinton and A. Sankarakrishnan, “A comparison of Monte Carlo techniques for composite power system reliability assessment,” IEEE Wescanex’95 proceedings, pp. 145-150, 1995.
[40] D. R. Anderson, D. J. Sweeney, and T. A. Williams, Statistics for Business and Economics, South-Western, Thomson Learning Inc., 8th ed., 2002.
[41] E. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, Inc. 1992.
[42] R. C. Wilcox and B. M. Ayyub, “Uncertainty modeling of data and uncertainty propagation for risk studies,” Proceedings of the 4th International Symposium on Uncertainty Modeling and Analysis Conf., 2003.
[43] M. Modarres, M. Kaminskiy, and V. Krivtsov, Reliability Engineering and Risk Analysis- A Practical Guide, New York, Basel: Marcel Dekker, Inc., 1999.
[44] G. Tang, F. B. Liu, Y. Li, B. Yu, and R. Fu, “Risk-based assessment and decision making of power system security in power market,” Proceedings of IEEE DRPT 2004, Hong Kong, pp.551-555, April 2004.
[45] Y. K. Wu, “Comparison of pricing schemes of several deregulated electricity markets in the world,” Proceedings of 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian, China, 2005.
[46] D. R. Bobo and D. M. Mauzy, “Economic generation dispatch with responsive spinning reserve constraints,” IEEE Trans. Power Systems, Vol. 9, No. 1, pp. 555-559, Feb. 1994.
[47] C. T. Su, C. M. Lin, and Y. F. Wang, “Economic dispatch and spinning reserve scheduling for generation transmission systems,” proceedings of IEEE MELECON 2004, Dubrovnik, Croatia, pp.865-868, May 12-15, 2004.
[48] J. Zhu, G. Jordan, and S. Ihara, “The market for spinning reserve and its impacts on energy prices,” Proceedings of IEEE 2000 Power Engineering Society Winter Meeting, pp. 1202-1207, Jan. 2000.
[49] Z. Song, L. Goel, and P. Wang, “Optimal spinning reserve allocation in deregulated power systems,” IEE Proc.-Gener. Transm. Distrib., Vol. 152, No. 4, pp. 483-488, July 2005.
[50] M. Rashidi-Nejad, Y. H. Song, and M. H. Javidi-Dasht-Bayaz, “Operating reserve provision in deregulated power markets,” Proceedings of IEEE 2002 Power Engineering Society Winter Meeting, pp. 1305-1310, Jan. 2000.
[51] A. Moshref, C. Henville, R. Curtis, K. Morison, L. Albassam, M. Owayedh. O. El Said, and M. Ashiq, “Design of a special protection system to maintain system security at high import,” Proceedings of IEEE 2003 Power Engineering Society General Meeting, pp. 311-319, July 2003.
[52] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, New York: Plenum Press, 2nd ed., 1994.
[53] J. Endrenyi, Reliability Modeling in Electric Power Systems, Toronto, Ontario, January 1978.
[54] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault Tree Handbook, NUREG-0492, U.S. Nuclear Regulatory Commission, Washington, D.C., Jan. 1981.
[55] B. Knegtering and A. C. Brombacher, “A method to prevent excessive numbers of Markov states in Markov models for quantitative safety and reliability assessment,” [Online]. Available: http://www.safetyusersgroup.com
[56] Tsun-Yu Hsiao, and Chan-Nan Lu, “Special Protection System Reliability Assessment,” Proceedings of IEEE IAS Industry & Commercial Power Systems Technical Conference (ICPS), Edmonton, Alberta, Canada, 6-11 May 2007.
[57] G. Apostolakis, “A commentary on modeling uncertainties,” Proceedings of Workshop I in Advanced Topics in Risk and Reliability Analysis. Model Uncertainty: Its Characterization and Quantification, A. Mosleh et al. ed., NUREG/CP-0138, 1993.
[58] M. V. Frank, “Case studies of uncertainty analysis in reliability and risk assessment,” Safety Factor Associates, Inc. [Online]. Available: http:// www.fault-tree.net
[59] IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing Component, and Mechanical Equipment Reliability Data of Nuclear-Power Generating Stations, IEEE Std 500-1982.
[60] T. R. Moss, The Reliability Data Handbook, ASME Press, 2005.
[61] H. W. Hall, D. I. Blockley, and J. P. Davis, “Uncertain inference using interval probability theory,” International Journal of Approximate Reasoning, Vol. 19, pp. 247-264, 1998.
[62] J. D. McCalley, A. A. Fouad, V. Vittal, A. A. Irizarry-Rivera, B. L. Agrawal, and R. G. Farmer, “A risk-based security index for determining operating limits in stability-limited electric power systems,” IEEE Trans. Power Systems, Vol. 12, pp. 1210-1219, Aug. 1997.
[63] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Wadsworth, Belmont, 1984.
[64] H. C. Frey, A. Mokhtari, and T. Danish, “Evaluation of selected sensitivity analysis methods based upon applications to two food safety process risk models,” Dept. of Civil, Construction, and Environmental Eng., North Carolina State Univ., Raleigh, NC, 2003.
[65] IEEE Guide for General Principles of Reliability Analysis of Nuclear Power Generating Station Safety Systems, ANSI/IEEE Std. 352-1987.
[66] Jalal Zamanali, “Probabilistic-risk-assessment applications in the nuclear-power industry,” IEEE Trans. Rel., Vol. 47, No. 3-SP, pp. 361-364, Sep. 1998.
[67] M. Stamatelatos et al, Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, Version 1.1, Aug. 2002.
[68] H. Wan, J. D. McCalley, and V. Vittal, “Increasing thermal rating by risk analysis,” IEEE Trans. Power Systems, Vol. 14, No. 3, pp. 815-828, Aug. 1999.
[69] W. Fu, J. D. McCalley, and V. Vittal, “Risk assessment for transformer loading,” IEEE Trans. Power Systems, Vol. 16, No. 3, pp. 346-353, Aug. 2001.
[70] H. Wan, J. D. McCalley, and V. Vittal, “Risk based voltage security assessment,” IEEE Trans. Power Systems, Vol. 15, No. 4, pp. 1247-1254, Nov. 2000.
[71] H. Singh and A. D. Papalexopoulos, “Competitive procurement of ancillary services by an independent system operator,” IEEE Trans. Power Systems, Vol. 14, No. 2, pp. 498-504, May 1999.
[72] K. W. Cheung, P. Shamsollahi, D. Sun, J. Milligan, and M. Potishnak, “Energy and ancillary service dispatch for the interim ISO New England electricity market,” IEEE Trans. Power Systems, Vol. 15, No. 3, pp. 968-974, Aug. 2000.
[73] S. S. Oren, “Design of ancillary service markets,” Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Jan. 3-6, 2001.
[74] T. Y. Hsiao, C. A. Shieh, and C. N. Lu, “Reliability evaluation of a Taipower system protection scheme,” Proceedings of IEEE PES Power Systems Conference and Exposition (PSCE), Vol. 1, pp. 157-162, 10-13 Oct. 2004.
[75] G. Apostolakis, “Bayesian methods in risk assessment,” Advances in Nuclear Science and Technology, J.Lewins and M. Becker, ed., Plenum Press, 1981.
[76] C. N. Ning, C. A. Hsieh, T. Y. Hsiao, and C. N. Lu, “Two application examples of probabilistic risk assessment in power system operations,” IEEE Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), KTH, Stockholm, Sweden, June 11-15, 2006.
[77] B. Lesieutre and J. Eto, “Electricity transmission congestion costs: a review of recent reports,” Ernest Orlando Lawrence Berkeley National Laboratory, Oct. 2003. [Online]. Available: http://eetd.lbl.gov/ea/EMS/EMS_pubs.html
[78] J. Zhong, M. Xie, and F. F. Wu, “Ordinal optimization for power systems,” Proceedings of IEEE PES Power Systems Conference and Exposition, pp. 202-206, 2006.
[79] M. Xie, J. Zhong, and F. F. Wu, “Multiyear transmission expansion planning using ordinal optimization,” IEEE Trans. Power Systems, Vol. 22, No. 4, pp. 1420-1428, Nov. 2007.
[80] M. G. Adamiak et al, “Wide area protection – technology and infrastructures,” IEEE Trans. Power Systems, Vol. 21, No. 2, pp. 601-609, Apr. 2006.
[81] C. W. Liu, “Phasor measurement applications in Taiwan,” Proceedings of 2002 IEEE/PES Transmission and Distribution Conference & Exhibition, Asia and Pacific, pp. 490-493, 2002.
[82] S. Rovnyak and Y. Sheng, “Using measurements and decision tree processing for response-based discrete-event control,” Proceedings of IEEE 1999 Power Engineering Society Summer Meeting, pp. 10-15, July 1999.
[83] J. A. Huang et al, “Application of data mining techniques for automat settings in emergency control at Hydro-Quebec,” Proceedings of IEEE 2003 Power Engineering Society General Meeting, pp. 2037-2044, July 2003.
[84] L. P. He, H. Z. Huang, and M. J. Zuo, “Fault tree analysis based on fuzzy logic,” Proceedings of 2007 Annual Reliability and Maintainability Symposium, pp. 77-82 Jan. 2007.
[85] A. G. Phadke and J. S. Thorp, “Expose hidden failures to prevent cascading outages,” IEEE Computer Applications in Power, pp. 20-23 July 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code