Responsive image
博碩士論文 etd-0704108-142141 詳細資訊
Title page for etd-0704108-142141
論文名稱
Title
孤立內波粒子運動軌跡實驗
Experimental Study on the Orbital Motion Induced by Internal Solitary Wave
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-20
繳交日期
Date of Submission
2008-07-04
關鍵字
Keywords
內波、軌跡、實驗室實驗
internal wave, experimental study, orbital motion
統計
Statistics
本論文已被瀏覽 5734 次,被下載 18
The thesis/dissertation has been browsed 5734 times, has been downloaded 18 times.
中文摘要
目前台灣現場觀測內波多在南中國海或東海,利用SAR影像分析和ADCP或溫度串等儀器錨碇,長期量測其振幅變化及流速;然因影響現場觀測的因數過多,且不易掌握其各別對內波的影響,對內波內水粒子運動軌跡研究亦無法檢驗。
本研究於中山大學二維內波水槽(12×0.5×0.7 m),於總水深0.5 m的條件下,在雙層流水體中製造界面孤立內波,觀測內波傳遞時水粒子運動軌跡,計算內波流速分佈,並與孤立內波傳遞數值模式之結果相比較。隨後利用實驗室實驗結果修正數值模式結果,求得迴歸式縮小數值與實驗結果差異,再結合數值與實驗之相關物理特性,研究內波各層水體間流速變化及流場分佈情形。水槽中之上、下層水深比 、造波區位能差及追蹤粒子密度為實驗主要控制變因。在不同實驗條件配合下,以影像分析技術求得水粒子運動之物理量,並與數值模式計算結合,探討在不同水深處之水粒子運動特性。
由量測實驗室下沉型與上舉型孤立內波的水粒子運動,得知內波流場中密躍層上、下水體的水平流速呈不對稱型態。在界面上、下水體產生反向流場,與波同向的水層其水平速度大於反向的水層。水平流速在界面形成分隔,界面水平流速為零,在其上下發生互相反向的流場;而垂直流速的分隔點則是發生在內波波谷或波峰,在此處垂直流速為零,最大的垂直流速則發生在波谷或波峰前後兩側的界面水深處。數值計算之孤立內波流場分佈,發現渦漩不會發生在波谷或波峰的上下,而在下沉型孤立內波的波谷上方至界面水深或上舉型孤立內波波峰下方至界面水深處,界面明顯阻隔上下水體的交換。
由結合修正的數值模式與實驗室試驗資料,可建立孤立內波在水平底床傳遞時的流場分佈,對孤立內波之水粒子運動特性有更深入的暸解,能做為未來驗證基礎理論或現場研究之參考。
Abstract
Many oceanographers have conducted field experiments on internal waves in the South China Sea using SAR imagery, ADCP and CTD. The results arising from these field studies are mostly in terms of wave amplitudes and flow velocities. Despite schematic diagram depicting the orbits of water particle motion has been accepted for more than decades, evidence has not been available from field observations or laboratory experiments.
Laboratory experiments on water-particle motion were conducted on the propagation of elevation and depression ISW in a stratified two-layer fresh/brine fluid system in a steel-framed wave tank of 12 m long with cross section of 0.7 m high by 0.5 m wide. Numerical modeling was also performed using in put data identical to laboratory experiments.
Based on our results of the numerical and laboratory experiments, the velocity field displays significant vortex while an internal solitary wave (ISW) propagates on a flat bottom. The strong vortex appears in the region of wave crest or trough. The track of fluid particle velocity in the upper layer is asymmetric and is moving in the opposite direction to that in the lower layer. The maximum horizontal velocity occurs at the crest of an elevation ISW and at the trough of a depression ISW. However, no horizontal flow is found on the interface of the still water level, and no vertical velocity at the wave peak. The vertical and horizontal velocities are antecedent with the water depth. For an elevation ISW, the maximum horizontal velocity appears in the lower layer, and vice versa for a depression ISW. The direction of the horizontal velocity in the upper layer is opposite to that in the lower layer.
This study presents the results of numerical calculations and laboratory observations of the particles originally resting on a specific level and their movements within an ISW. The finding generated from this research would benefit others on the verification of field results or analytical theory for fluid particle motions associated with ISW.
目次 Table of Contents
謝誌
摘要 I
Abstract II
目錄 IV
符號表 VI
圖目錄 VIII
表目錄 X

第一章 緒論 1-1
1.1 前言 1-1
1.2 文獻回顧 1-3
1.2.1 現場研究調查 1-3
1.2.2 實驗室研究 1-6
1.2.3 理論研究 1-7
1.3 研究目的 1-9
1.4 本文架構 1-10
第二章 內波基本理論與理論推導 2-1
2.1 內波的生成與傳遞 2-1
2.1.1 水體的分層 2-1
2.1.2 內波的生成 2-2
2.1.3 內波的型態 2-3
2.1.4 內波的傳遞 2-4
2.1.5 內波的流場 2-4
2.2 內波水粒子運動理論 2-6
第三章 實驗室佈置 3-1
3.1 實驗設置 3-1
3.1.1 實驗設備與儀器設置 3-1
3.1.2 實驗步驟與流程 3-4
3.1.3 實驗儀器之設置 3-7
3.1.4 實驗條件 3-7
3.1.5 實驗項目 3-10
3.2 數值模式設定 3-13
第四章 實驗數據整理 4-1
4.1 實驗室實驗說明 4-1
4.1.1 粒子運動軌跡 4-1
4.1.1.1 下沈型孤立內波 4-1
4.1.1.2 上舉型孤立內波 4-3
4.1.2 實驗室孤立內波粒子速度量測 4-5
4.1.3 實驗室實驗條件參數 4-11
4.2 數值試驗結果分析 4-15
4.2.1 數值試驗之流場及流速 4-15
4.2.2 數值試驗計算之物理量 4-21
第五章 實驗結果分析與討論 5-1
5.1 實驗室數據分析 5-2
5.1.1 水平流速與垂直流速 5-3
5.1.2 振幅與水平流速關係 5-6
5.1.3 內波波形對最大水平流速的影響 5-8
5.2 實驗與數值模式比較結果 5-12
5.2.1 密度分層的差異性 5-12
5.2.2 水平及垂直最大流速比較 5-16
5.2.3 建立流速修正經驗式 5-21
5.3 修正數值模式結果及比較 5-28
5.3.1 流速修正比較 5-28
5.3.2 分析數值計算結果 5-34
第六章 結論與建議 6-1
6.1 結論 6-1
6.2 建議 6-5
參考文獻
參考文獻 References
Apel, J.R., J.R. ,Holbrook, J. Tsai, and A.K.,Liu, (1985). The Sulu Sea internal
soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651.
Benjamin, T.B., (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270.
Bole, J.B., J.J. Ebbesmeyer, and R.D. Romea, (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas, pp. 367-375.
Boussinesq, J., (1871). Theorie genenerale des mouvements qui sont progages
dans un canal rectangulaire horizontal. Comptes Rendus Hebdomadaires des Seance de lAcademie des Sciences, 73: 256-260.
Burnside, W., (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Sec. 1:392-397.
Chappelear, J.E., (1961). Direct numerical calculation of nonlinear ocean waves. J. Geophys. Res., 66 (2): 501-508.
Dalziel, S.B., M. Carr, J.K. Sveen, and P.A. Davies, (2007). Simultaneous synthetic schlieren and PIV measurement for solitary waves, Meas.Sci.Technol. 18, 533-547.
Davis, R.E., and A Acrivos, (1967). Solitary internal waves in deep water. J. Fluid Mech., 29: 593-607.
Dean R.G., and R.A. Palrymple, (1984). Water wave mechanics for engineers and scientists, prentice-Hull, Inc., New Jersey.
Ebbesmeyer, C.C., and R.D. Romea, (1992). Final design parameters for solitons at selected locations in South China Sea. Final and Supplementary reports prepared for Amoco Production Company. 209pp. plus appendices.
Farmer, D.M., (1978). Observation of long nonlinear internal waves in a lake. J. Phys.
Oceanography, 8(1): 63-73.
Garrett, C., and W. Munk, (1979). Internal Waves in the Ocean. Annual Review of
Fluid Mechanics. 11: 339-369.
Garrett, C.J.R., and W.H. Munk, (1992). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264.
Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press.
Guo Y., J. K. Sveen, P. A. Davies, J. Grue, and P. Dong, (2004). Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Environmental Fluid Mechanics, 4: 415–441.
Haury, L. R., M.G. Briscoe, and M.T. Orr, (1979). Tidally generated internal wave
packets in Massachusetts Bay. Nature, 278-312.
Honji, H., Matsunaga, N.Y. Sugihara, and K. Sakai, (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dyn. Res., 15 (2): 89-102.
Hunkins, K., and M. Fliegel, (1973). Internal undular surges in Senece Lake: a natural
occurrence of solitons. J. Geophysical Research, 78: 539-548.
Hsu, M.K., and A K. Liu, (2000). Nonlinear internal waves in the South China Sea. Canadian Journal of Remote Sensing, 26: 72-81.
Hsu, J.R.C., and J. Ariyaratnam, (2000). Pressure fluctuations and a mechanism for sediment suspension in swash zone. Proc. 27th Inter. Conf. on Coastal Eng., ASCE, vol. 1, p. 610-623.
Isobe, M., H. Nishimura, and K. Horikawa, (1982). Theoretical considerations on perturbation solutions for waves of permanent type, Bull. Faculty Eng., Yokohama Nat. Univ., Japan, Vo1. 31, pp.29-57.
Jackson C., (2007). Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J.G.R., 112(C3): C11012.
Kamachi, M., and H. Honji, (1982). The instability of viscous two-layer oscillatory flows. J. Oceanographical Society of Japan, 38 (6): 347-356.
Kamachi M., and H. Honji, (1988). Interaction of interfacial and internal waves. Fluid Dyn. Res., 2: 229-241.
Katz E.J., (1967). Effect of the propagation of internal waves in underwater sound transmission. J. Acoust. Soc. Amer., 42(1): 83–87.
Kao, T.W., and H.P. Pao, (1979). Wake collapse in the thermocline and internal solitary waves. J. Fluid Mech., 97: 115-127.
Kao, T.W., F.S. Pan, and D. Renouard, (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech., 159: 19-53.
Koop, C.G., and G. Butler, (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251.
Korteweg, D.J., and G. De Vries, (1895). On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves.
Phil.Magazine,39(5):422-443
Laitone, E.V., (1960). The second approximation to cnoidal and solitary waves. J. Fluid Mech., 9: 430-444.
Lamb, H., (1932). Hydrodynamics. 6th ed. NY: Dover Publications, Republished in 1945.
LeBlond, P.H., and L.A. Mysak, (1978). Waves in the Ocean. Amsterdam: Elsevier.
Lee, C.-Y., and R.C. Beardsley, (1974). The generation of long nonlinear internal waves in a weakly stratified shear flow, J. Geophys. Res., 79453-462.
Liu, A. K., (1988): Analysis of nonlinear internal waves in the New York Bight. J. Geophys. Res., 93: 122-317.
Love, A.E.H., (1891). Wave-motion in a heterogeneous heavy liquid. Proc. London Math. Soc., 22: 307-316.
Maxworthy, T., (1979). A note on the internal solitary waves produced by tidal flow
over a three-dimensional ridge. J. Geophys. Res., 84, 338-346.
Ono, H., (1975). Algebraic solitary waves in stratified fluid. J. Phys. Soc. Japan, 39: 1082-1091.
Osborne, A.R., T.L. Burch, and T.I. Scarlet, (1978). The influence of internal waves
on deepwater drilling . J. Petroleum Tech., 30: 1497-1504.
Osborne, A.R., and T.L. Burch, (1980). Internal solitons in the Andaman Sea. Science, 208 (4443): 451-460.
Perry, R.B., and G.R. Schimke, (1965). Large-amplitude internal waves observed off
the northwest coast of Sumatra. J. Physical Oceanography, 70(10): 2319-2324.
Rayleigh, Lord., (1876). On Waves. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Ser. 5, 1 (4): 257-279, April.
Rayleigh, Lord., (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14: 170 - 177.
Russell, J.S., (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390.
Sandstrom, H., and J.A. Elliott, (1984). Internal tide and solitons on the Scotianshelf: a nutrient pump at work. J. Geophys. Res., 89(4): 6415–6426
Stevens, C., G. Lawrence, P. Hamblin, and E. Carmack, (1996). Wind forcing of
internal waves in a long narrow stratified lake. Dynamics of Atmospheres and
Oceans, 24: 41-50.
Stokes, G.G., (1847). On the theory of oscillatory waves. Trans. Cambridge Phil. Soc., 8: 441-455.
Sveen, J.K., Y. Guo, P.A. Davies, and J. Grue, (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188.
Sveen, J.K. and S.B. Dalziel, (2007). A dynamic masking technique for combined measurements of PIV and synthetic schlieren applied to internal gravity waves. Meas. Sci. Technol. 16 (2005) 1954–1960.
Tsuji Koshinobu and Nugata Yutaka, (1973). Stokes’ E xpansion of Internal Deep Water Waves to the Fifth orders. J. Ocean. Soc. Japan. 61-69.
Vlasenko, V., (1994). Multimodal soliton of internal waves. Atmospheric and oceanic physics, 30(2):161-169.
Vlasenko, V., (2000). Structure of large-amplitude internal solitary waves. J. Phys. Oceanography, 30:2172-2185.
Vlasenko, V.I., and K. Hutter, (2001). Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics, 8: 223-239.
Vlasenko, V., and K. Hutter, (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanography, 32(6): 1779-1793.
Vlasenko, V., L. Ostrovsky, and K. Hutter, (2005). Adiabatic behavior of strong nonlinear internal solitary waves in slope-shelf areas. J.G.R., 110(C4):C04006.
West, B.J., (1981). Nonlinear properties of internal waves. Proceedings of American
Institute of Physics, New York, 76: 353-359.
Yang, Y.J., T.Y. Tang, M.H. Chang, A.K. Liu, M.K. Hsu, and S.R. Ramp, (2004). Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering, 29(4): 1182-1199.
劉金源 (2002)。海洋聲學導論-海洋聲波傳撥與粗糙面散之基本原理。國立中山大學出版社。
許泰文 (2003)。 近岸水動力學。中國土木水利工程編。
唐存勇 (2007)。海面下的巨浪—內波的研究與應用。國科會專題報告。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.226.105
論文開放下載的時間是 校外不公開

Your IP address is 18.118.226.105
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code