Responsive image
博碩士論文 etd-0704108-155059 詳細資訊
Title page for etd-0704108-155059
論文名稱
Title
雪山隧道內車輛與豎井通風系統之揮發性有機物排放量推估
Emissions of volatile organic compounds in the Hsuehshan tunnel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-12
繳交日期
Date of Submission
2008-07-04
關鍵字
Keywords
長隧道、豎井、排放係數、排放量、臭氧生成潛勢
Long tunnel, Emission factor, Emissions, Ozone formation potential, Shaft system
統計
Statistics
本論文已被瀏覽 5661 次,被下載 12
The thesis/dissertation has been browsed 5661 times, has been downloaded 12 times.
中文摘要
本研究於雪山隧道南下及北上車道及排氣豎井口進行採樣,其中第一時段為上午(8:00 − 10:00)、第二時段為中午(12:00 − 14:00)、第三時段下午(16:00 − 18:00),分析56種揮發性有機物。隧道量測中南下出口濃度最高之物種為乙烯113.03 ppb,其次分別為異戊烷45.6 ppb、乙炔44.88 ppb、丙烯42.49 ppb及甲苯35.30 ppb;北上出口濃度最高之物種為乙烯93.07 ppb,其次分別為異戊烷50.19 ppb、丙烯44.09 ppb、乙炔39.38 ppb及甲苯32.18 ppb。隧道中有機物成分區分後南下北上路段近似,百分比由大至小順序為烷類(36.69% − 39.20%)、芳香族類(34.14% − 36.33%)、烯類(20.27% − 21.95%)、炔類(3.35% − 4.11%)及環烷類(1.06% − 1.35%)。
雪山隧道內南下路段車輛排放係數較高的物種為乙烯(4.93 ± 2.21 mg/veh-km)、異戊烷(4.85 ± 2.75 mg/veh-km)、甲苯(4.55 ± 1.31 mg/veh-km)、間,對-二甲苯(2.98 ± 0.90 mg/veh-km)以及丙烯(2.70 ± 0.88 mg/veh-km);北上路段車輛排放係數較高的物種為異戊烷(6.78 ± 3.33 mg/veh-km)、乙烯(5.44 ± 2.63 mg/veh-km)、甲苯(5.32 ± 2.39 mg/veh-km)、丙烯(3.55 ± 1.67 mg/veh-km)以及間,對-二甲苯(3.36 ± 1.45 mg/veh-km)。排放係數較台灣其他公路隧道小,推測原因為隧道內污染物部分由豎井排放,導致隧道內濃度梯度不明顯。雪山隧道排氣豎井排放係數於假日與非假日具有明顯差異性,平日排放係數為53.40 mg/s − 82.74 mg/s,假日排放係數為72.24 mg/s − 180.60 mg/s,且豎井受排氣量影響甚鉅,造成部份排放係數標準差接近平均值。將豎井排放換算所得之排放係數與其他實驗結果接近。
臭氧生成潛勢量(OFP)於北上路段以烯類(47.5% − 48.5%)為最高,其次為芳香族類(40.2% − 41.3%)及烷類(9.8% − 10.1%)。南下結果與北上相近。
Abstract
Hsuehshan tunnel which included two bore and three ventilation shaft systems is the longest (12.9 km) freeway tunnel in Taiwan. 56 species volatile organic compounds (VOCs) were sampled in two different locations each bore and three emitted shafts to determine the emission factors (EFs). Each sampling day has three sampling period: morning (8:00-10:00), Noon (12:00-14:00) and afternoon 16:00-18:00). C2 species were analyzed by GC/FID and C3 − C12 species were analyzed by GC/MS.
The composition in southern bore was expressed by alkanes (36.69% − 39.20%), aromatics (34.14% − 36.33%), alkenes (20.27% − 21.95%), Alkynes (3.35% − 4.11%) and Naphthenes (1.06% − 1.35%). Northern bore had the similar profile.
Ethylene (4.93 ± 2.21 mg/veh-km), Isopropane (4.85 ± 2.75 mg/veh-km), toluene (4.55 ± 1.31 mg/veh-km), m,p-xylene (2.98 ± 0.90 mg/veh-km) and propylene (2.70 ± 0.88 mg/veh-km) are the top five abundant VOCs in southern bore ; Isopropane (6.78 ± 3.33 mg/veh-km), ethylene (5.44 ± 2.63 mg/veh-km), toluene (5.32 ± 2.39 mg/veh-km), propylene (3.55 ± 1.67 mg/veh-km) and m,p-xylene (3.36 ± 1.45 mg/veh-km) are the top five abundant VOCs in northern bore. The EFs were smaller than other freeway tunnel investigated. Shaft emitted the partial mass of VOCs result in concentration gradient dropped off.
The total VOCs EF of shafts during holidays was in the range of 72.24 mg/s − 180.60 mg/s higher than on weekdays in the range of 53.40 mg/s − 82.74 mg/s. The EF of shafts had effected by air-extracting apparatus, so standard deviations (S.D.) varied widely. Combining the EF of shaft with EF of tunnel we obtained the overall vehicle EF which was close to other freeway tunnel results.
The proportion of Ozone formation potential (OFP) in both bore were alkenes (47.5% − 48.5%), aromatics (40.2% − 42.3%) and alkanes (9.8% − 10.1%). Note that sum of alkenes and aromatics exceeded 90%.
目次 Table of Contents
謝誌I
摘要II
ABSTRACT III
目錄V
表目錄VIII
圖目錄IX

第一章 前言1-1
1.1 研究緣起1-1
1.2 研究目的1-1

第二章 文獻回顧2-1
2.1雪山隧道背景資料2-1
2.1.1雪山隧道周界之氣象背景概述2-1
2.1.2空氣品質背景濃度2-2
2.1.3車流量資料2-4
2.2雪山隧道描述2-8
2.2.1雪山隧道地理位置2-8
2.2.2雪山隧道構造及尺寸2-9
2.2.3雪山隧道通風系統2-10
2.2.4隧道內空氣品質法規及設計值2-11
2.3移動源排放之特性與影響因子2-14
2.3.1移動源排放之特性2-14
2.3.2隧道移動源之排放係數2-15
2.3.3影響移動源排放之因子2-17
2.4揮發性有機物對人體之健康危害與風險評估2-19
2.4.1健康危害2-19
2.4.2健康風險評估2-20

第三章 研究方法與步驟3-1
3.1 研究架構與流程3-1
3.2現場採樣規劃3-2
3.2.1採樣及頻率規劃3-2
3.3 VOCs之採樣與分析3-5
3.3.1 VOC採樣3-5
3.3.2 VOC分析3-6
3.4品質保證與品質管理3-10
3.4.1檢量線製備3-10
3.4.2準確度3-12
3.4.3精密度(RSD)3-12
3.5移動源排放係數及排放量推估3-13
3.6臭氧生成潛勢分析3-15
3.6.1最大增量反應性3-15
3.6.2臭氧生成潛勢量(OFP)評估法3-18

第四章 結果與討論4-1
4.1雪山隧道揮發性有機物濃度變化及特性分析4-1
4.1.1雪山隧道採樣日基本資料4-1
4.1.2雪山隧道揮發性有機物濃度4-6
4.1.3雪山隧道揮發性有機物特性分析4-13
4.2雪山隧道豎井揮發性有機物濃度變化及特性分析4-16
4.2.1雪山隧道排氣豎井揮發性有機物濃度4-16
4.2.2雪山隧道排氣豎井揮發性有機物特性分析4-21
4.3雪山隧道車輛及豎井排放量推估4-24
4.3.1車輛排放係數推估4-24
4.3.2雪山隧道與國內公路隧道排放係數比較4-29
4.3.3豎井排放係數推估4-34
4.3.4雪山隧道排放量推估4-40
4.3.5臭氧生成潛勢量(OFP)評估法4-43

第五章 結論與建議5-1
5.1 結論5-1
5.2 建議5-3

參考文獻 參-1
附錄A分析樣品之精確度與準確度 附A-1
附錄B風機手動運轉週期 附B-1
附錄C作者簡歷 附C-1

表目錄
表2.2-1 三組通風豎井尺寸2-11
表2.2-2 國內外公路隧道內空氣品質設計標準2-12
表2.2-3 雪山隧道之空氣品質設計與通風系統運轉模式2-13
表2.3-1 汽油柴油成份標準2-18
表2.4-1 HAPs之致癌分類單位風險及慢性非致癌參考濃度值2-22
表3.2-1 採樣時間及頻率3-2
表3.2-2 雪山隧道排氣豎井資料3-3
表3.3-1 採樣分析之56種揮發性有機物3-7
表3.6-1 最大增量反應性(MIR)反應尺度資料表3-17
表4.1-1 隧道內採樣氣象資料4-3
表4.1-2 採樣日期各時段之車流量4-5
表4.1-3 雪山隧道內各採樣點之濃度分佈4-7
表4.1-4 採樣物種碳數分類表4-15
表4.2-1 雪山隧道豎井採樣點濃度分布4-18
表4.3-1 隧道內排放係數4-26
表4.3-2 車流量百分組成4-28
表4.3-3 國內公路隧道比較表4-30
表4.3-4 豎井排放各時段風速4-34
表4.3-5 豎井排放係數4-36
表4.3-6 豎井TVOC排放係數假日非假日比較4-38
表4.3-7 雪山隧道排放係數4-42
表4.3-8 隧道臭氧生成潛勢量4-45
表4.3-9 豎井臭氧生成潛勢量4-45

圖目錄
圖2.1-1 雪山隧道坪林行控中心空氣品質監測站風花圖(05/10~06/3)2-1
圖2.1-2 雪山隧道坪林行控中心空氣品質監測值2-4
圖2.1-3 雪山隧道2007年各月份日平均車流量2-5
圖2.1-4 雪山隧道各月份逐時車輛數(民國96年6−12月)(a)北上(b)南下2-6
圖2.1-5 2007年週車流量變化圖2-7
圖2.2-1 國道五號及雪山隧道位置圖2-8
圖2.2-2 隧道斷面示意圖2-9
圖2.2-3 雪山隧道三組通風豎井示意圖2-10
圖2.4-1 模擬56種VOC與氫氧自由基反應之半衰期2-21
圖3.1-1 研究架構流程圖3-1
圖3.2-1 雪山隧道內採樣點位置3-3
圖3.2-2 雪山隧道豎井採樣點位置3-4
圖3.3-1 豎井採樣示意圖(a)豎井外觀(b)現場採樣3-5
圖3.3-2 分析系統簡圖3-6
圖3.3-3 FID操作升溫曲線示意圖3-8
圖3.3-4 MS操作升溫曲線示意圖3-9
圖3.3-5 GC/MS分析揮發性有機物圖譜3-9
圖3.4-1 GC-FID分析C2物種之減量線3-11
圖3.5-1 行駛雪山隧道交通排放量推估之示意圖3-14
圖4.1-1 雪山隧道南下出入口各物種濃度4-10
圖4.1-2 雪山隧道北上出入口各物種濃度4-10
圖4.1-3 南下出入口TVOC濃度時段變化(a)平日(b)假日4-11
圖4.1-4 北上出入口TVOC濃度時段變化(a)平日(b)假日4-12
圖4.1-5 隧道內VOCs濃度百分組成4-13
圖4.1-6 雪山隧道南下北上各碳數百分比4-15
圖4.2-1 雪山隧道豎井採樣點TVOC時段變化(a)平日(b)假日4-21
圖4.2-2 雪山隧道排氣豎井濃度百分組成4-22
圖4.2-3 豎井口碳數分類排放濃度4-23
圖4.3-1 隧道排放系數比較4-33
圖4.3-2 豎井各時段排放係數變化4-39
參考文獻 References
Anilovich, I., Hakkert, A. S., 1996. Survey of vehicle emissions in israel related to vehicle age and periodic inspection. The Science of Total Environment 189/190, pp. 197 – 203.
Atkinson, R., 1985. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chemical Reviews, 85, pp. 69 – 201.
Cadele, S. H., Mulawa, P., Groblicki, P., Laroo, C., 2001. In-use light-duty gasoline vehicle particulate matter emission on three driving cycles. Environmental Science & Technology, 35, pp. 26 – 32.
Chang, C. C., Lo, J. G. and Wang, J. L. 2001. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel. Atmospheric Environment, 35, pp. 6201 – 6211.
Chen, K. S., Lai, C. H., Ho, Y. T., 2003. Source profiles and ozone formation potentials of volatile organic compounds in three traffic tunnels in Kaohsiung, Taiwan. Journal of Air and Waste Management Association, 53, pp. 102 – 112.
Chiang, H. L., Hwu, C. S., Chen, S.Y., Wu, M. C., Ma, S. Y., Huang, Y. S., 2007. Emission factors and characteristics of criteria pollutants and volatile organic compounds (VOCs) in a freeway tunnel study. Science of the Total Environment, 381, pp. 200 – 211.
COEHHA, 2002b. All Chronic Reference Exposure Levels Adopted by OEHHA as of September 2002. The original list of hazardous air pollutants http://www.oehha.ca.gov/air/chronic_rels/AllChrels.htm.
COEHHA, 2005. All Chronic Reference Exposure Levels Adopted by OEHHA as of February 2005. The original list of hazardous air pollutants http://www.oehha.ca.gov/air/chronic_rels/AllChrels.html.
Council of the European Union, 1996. Council Directive 1996/62/EC of 27 September 1996 on ambient air quality assessment and management. Official Journal of the European Communities L, 296, pp. 55 – 63.
Gabele, P., 1997. Exhaust emission from four stroke lawn mower engine. Journal of the Air & Waste Management Association, 47, pp. 945 – 952.
McGaughey, G. R., Desai, N. R., Allen, D. T., Seila, R. L., Lonneman, W. A., Fraser, M. P., Harley, R. A., Pollack, A. K., Ivy, J. M., Price, J. H., 2004. Analysis of motor vehicle emissions in a Houston tunnel during the Texas Air Quality Study 2000. Atmospheric Environment, 38, pp. 3363 – 3372.
HM Government, 2000. The Air Quality (England) Regulations 2000. Statutory Instruments 2000, No. 928, The Stationery Office Ltd, London (Chapter25).
HM Government, 2002. The Air Quality (England) (Amendment) Regulations 2002. Statutory Instruments 2002, No. 3043, The Stationery Office Ltd, London.
Hsieh, C. C., Chang, K. H., Kao, Y. S., 1999. Estimating the ozone formation potential of volatile aromatic compounds in vehicles tunnels. Chemosphere 39, pp. 1433 – 1444.
IARC, International Agency for Research on Cancer, 2002. IARC Monographs Programme on the Evaluation of Carcinogenic Risks to Humans 2002.(http://monographs.iarc.fr/)
John, C., Friedrich, R., Staehelin, J., Schlapfer, K., Stahel, W. A., 1999. Comparison of emission factors for road traffic from a tunnel study (Gubrist tunnel, Switzerland) and from emission modeling. Atmospheric Environment, 33, pp. 3367 – 3376.
Kristensson, A., Johansson, C., Westerholm, R., Swietlicki, E., Gidhagen, L., Wideqvist, U., Vesely, V., 2004. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmospheric Environment, 38, pp. 657 – 673.
Na, K., 2006. Determination of VOC source signature of vehicle exhaust in a traffic tunnel. Journal of Environmental Management, 81, pp. 392 – 398.
Lenner, M., 1995. On-road measurements of single vehicle pollutant emissions, speed and acceleration for large fleets of vehicles in different traffic environments. The Science of the Total Environment, 169, pp. 157 – 165.
Levaggi, D. A., Sia, W., 1991. Gaseous toxics monitoring in the San Francisco Bay Area: a review and assessment of four years of data. 84th annual meeting of A&WMA, Vancouver, B. C., Columbia.
Possanzini, M., Di Palo, V., Petricca, M., Fratarcangeli, R., Brocco, D., 1996. Measurements of lower carbonyls in Rome ambient air. Atmospheric Environment, 30, pp. 3757 – 3764.
Hwa, M. Y., Hsieh, C. C., Wu, T. C., Chang, L. F. W., 2002. Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmospheric Environment, 36, pp. 1993 – 2002.
Ministry of Transportation and Communications (MTC), 2006. R.O.C., Statistical abstract of transportation and communications, number of registered vehicles by age in Taiwan-Fuchien area; http://www.motc.gov.tw.
Molhave, L., Nielsen, D. N., 1992. Interpretation and limitations of the concept “Total Volatile Organic Compounds” (TVOC) as an indicator of human responses to exposures of Volatile Organic Compounds (VOC) in indoor air. Indoor Air, 2, pp. 65 – 77.
Pierson, W. R., Gertler, A. W., Robinson, N. F., Sagebiel, J. C., Zielinska, B., Bishop, G. A., Stedman, D. H., Zweidinger, R. B., Ray, W. D., 1996. Real-world automotive emissions – summary of studies in the Fort McHenry and Tuscarora Mountain Tunnels. Atmospheric Environment, 30, pp. 2233 – 2256.
Sitting, M., 1974. “Aldehydes” Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, New Jersey.
Staehelin, J., Keller, C., Stahel, W., Schlapfer, K., Wunderli, S., 1998. Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland) Part III: results of organic compounds, SO2 and speciation of organic exhaust emission. Atmospheric Environment, 32, pp. 999 – 1009.
Stemmler, K., Bugmann, S., Buchmann, B., Reimann, S., Johannes Staehelin, J., 2005. Large decrease of VOC emissions of Switzerland’s car fieet during the past decade: results from a highway tunnel study. Atmospheric Environment, 39 pp. 1009 – 1018.
Sweet, C. W., Vermette, S. J., 1992. Toxic volatile organic compounds in urban air in Illinois. Environmental Science & Technology, 26, pp. 165 – 173.
TEPA. 2005. Emission of air pollutants in Taiwan, Taipei.
Touaty, M., Bonsang, B., 2000. Hydrocarbon emissions in a highway tunnel in the Paris area. Atmospheric Environment, 34, pp. 985 – 996.
USEPA, 2003a. Clean Air Act 2003. Retrieved April 2004. http://www.epa.gov/ora/caa/contents.html
USEPA, 2003b. Integrated Risk Information System 2003. Retrieved April 2004. http://cfpub.epa.gov/iris/
Zielinska, B., Sagebiel, J. C., Arnott, W. P., Rogers, C. F., Kelly, K. E., Wagner, D. A., Lighty, J. S., Sarofim, A. F., Palmer, G., 2004. Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emission. Environmental Science & Technology, 38, pp. 2557 – 2567.
王亭復,1995。北宜高速公路坪林隧道豎井排氣對茶樹生長環境影響調查研究,中興工程顧問社。
李昌翰,2004。台灣地區揮發性有機物之時空分布及健康風險評估,碩士論文,臺灣大學。
林巧芸,1998。醛類對血管收縮素功能影響的先驅研究,碩士論文,國立臺灣大學環境衛生研究所。
林振基,2006。北宜高速公路雪山隧道設計重點回顧,國道五號工程技術專題研討會。
林順信、楊之遠、葉芳露、林文印、張章堂,2006。雪山隧道車流量對隧道內空氣品質影響之研究。第23屆空氣污染控制技術研討會,東海大學。
袁中新、洪崇軒, 1997。高雄市地下道空氣污染防治策略研擬,高雄市政府環保局。
張能復、林裕強,1997。北部都會區道路機動車輛污染排放分析,第14屆空氣污染研討會。
張順欽、李崇德,2006。長隧道空氣品質變化與行進中車輛污染排放係數推估,第23屆空氣污染控制技術研討會,東海大學。
簡淑美、莊訓城、張和中、彭永翰、楊錫賢,2006。汽車使用液化石油氣與汽油燃料排放揮發性有機物、醛酮類化合物特徵與臭氧生成潛勢分析,第23屆空氣污染控制技術研討會,東海大學。
顏有利、林文印、邱顯文,2006。八卦山隧道揮發性有機物排放特性分析,第23屆空氣污染控制技術研討會,東海大學。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.82.79
論文開放下載的時間是 校外不公開

Your IP address is 13.58.82.79
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code