Responsive image
博碩士論文 etd-0704110-223723 詳細資訊
Title page for etd-0704110-223723
論文名稱
Title
以活性碳生物程序去除水處理系統中生物可利用有機碳及消毒副產物潛勢之研究
Removal of Assimilable Organic Carbon and Disinfection By-Products Formation Potential from Water Treatment Plant Using a Biological Activated Carbon Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-11
繳交日期
Date of Submission
2010-07-04
關鍵字
Keywords
生物活性碳、粉狀活性碳、粒狀活性碳、薄膜過濾、高級淨水流程、消毒副產物潛勢、生物可利用有機碳
membrane filtration, PAC, advanced purification processes, disinfection byproducts formation potential, BAC, assimilable organic carbon, GAC
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
國內南部淨水場之淨水程序已由傳統處理提升為高級處理,其中使用超過濾膜(Ultrafiltration, UF)及逆滲透膜(Reverse Osmosis, RO)之高級淨水程序對生物可利用有機碳(Assimilable Organic Carbon, AOC) 去除率約為47%,去除效果較臭氧及生物活性碳濾床(Biological Activated Carbon, BAC)約為62%之效率差。
故本研究整合生物活性碳與薄膜處理成為薄膜生物反應程序,應用在處理飲用水有機物上,探討AOC及消毒副產物潛勢(Disinfection By-Products Formation Potential, DBPFP)之去除成效。粒狀及粉狀生物活性碳處理系統對於AOC都有一定的去除效果,發現水力停留時間1hr之去除效能均可達到50%以上(可由44.28±9.84μg acetate-C/L降為20.93±4.25μg acetate-C/L及由45.92±17.75μg acetate-C/L降至21.23±4.25μg acetate-C/L),當水力停留時間延長至6hr,兩系統之AOC平均去除率均可達70%以上,平均值均可降至15μg acetate-C/L以下及符合文獻建議限值AOC 50μg acetate-C/L。
在消毒副產物潛勢去除效果上,粒狀及粉狀生物活性碳處理系統對於三鹵甲烷潛勢(Trihalomethanes Formation Potential, THMFP)及鹵化乙酸潛勢(Haloacetic acids Formation Potential, HAA5FP)皆有一定去除效能。THMFP出流水平均濃度分別由20.54±6.48μg/L降為14.21±4.47μg/L及由24.64±6.74μg/L降至14.75±4.04μg/L,而HAA5FP出流水平均濃度分別可由39.64±10.38μg/L降至17.35±4.00μg/L及由17.86±5.13μg/L降至11.76±3.76μg/L,均低於國內外法規標準值。顯示本研究中兩種活性碳處理系統對於AOC及DBPFP均有良好之處理成效,及符合國內外法規標準(THMs 80μg/L, HAA5 60μg/L),可達到生物穩定性高且品質良好之飲用水訴求。
Abstract
Taiwan Water Supply Cooperation (TWSC) has upgraded traditional purification processes into advanced treatment systems in south Taiwan for many years. The removal efficiency of assimilable organic carbon (AOC) by ultrafiltration (UF) with reverse osmosis (RO) systems was 47% was lower than that of 62% by ozone with biological activated carbon system (BAC).
In this work, we investigate the removal of AOC and disinfection by products formation potential (DBPFP) of raw water took from a water treatment plant by using BAC and membrane treatment units. BAC system of granular activated carbon(GAC) and powder activated carbon (PAC) showed two kind carbons have certain efficiency for AOC removal. Results we found could reach above 50% (from 44.28±9.84μg acetate-C/L reduce to 20.93±4.25μg acetate-C/L for GAC and from 45.92±17.75μg acetate-C/L reduce to 21.23±4.25μg acetate-C/L for PAC), when hydraulic retention time (HRT) in BAC reactor was at 1 hour. When HRT raised to 6 hours the concentration of AOC in effluent of BAC systems were reduced under 15 μg/L, and removal efficiency could reach above 70%. The suggested limit level of AOC is 50 μg/L of drinking water.
In removal of DBPFP, BAC of two carbons has showed certain efficiency on trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAA5FP). The results were done in removal of THMFP (from 20.54±6.48μg/L reduce to 14.21±4.47μg/L for GAC and from 24.64±6.74μg/L reduce to 14.75±4.04μg/L for PAC) and HAA5FP (from 39.64±10.38μg/L reduce to 17.35μg/L for GAC and from 17.86±5.13μg/L reduce to 11.76±3.76μg/L for PAC) in BAC reactors. They were all lower than national standard of drinking water (THMs 80μg/L, HAAs 60μg/L). It is believed that two kind carbons in BAC system could all reduce effectively on AOC and DBPFP to obtain high quality of drinking water with biological stability at HRT of 6 hours.
目次 Table of Contents
摘要 ............................................................................................................. I
Abstract ..................................................................................................... III
目錄 ............................................................................................................ V
表目錄 ...................................................................................................... IX
圖目錄 ...................................................................................................... XI
第一章 前言............................................................................................... 1
1-1 研究緣起 ...................................................................................... 1
1-2 研究目的 ...................................................................................... 2
1-3 研究內容 ...................................................................................... 3
第二章 文獻回顧 ...................................................................................... 4
2-1 飲用水有機物 .............................................................................. 4
2-1-1 水中有機物之來源與分類 ................................................ 4
2-1-2 天然有機物質對淨水工程之影響 .................................... 5
2-2 淨水流程 ...................................................................................... 6
2-2-1 臭氧 .................................................................................... 7
2-2-2 活性碳 ................................................................................ 9
2-2-3 薄膜 .................................................................................. 12
2-3消毒副產物 ................................................................................. 21
2-3-1三鹵甲烷 ........................................................................... 23 �
2-3-2鹵化乙酸 ........................................................................... 28
2-3-3 三鹵甲烷及鹵化乙酸之生成潛勢 .................................. 33
2-3-4消毒副產物之控制 ........................................................... 34
2-4生物穩定性 ................................................................................. 34
2-4-1 配水管網水質之生物穩定性 .......................................... 34
2-4-2 生物可分解有機質之測定 .............................................. 36
2-4-3 生物可利用有機碳AOC ................................................ 38
2-5 薄膜生物反應器 ........................................................................ 44
2-5-1 MBR配置型式 ................................................................. 44
2-5-2 活性碳生物處理系統 ...................................................... 46
第三章 研究方法 .................................................................................. 48
3-1實驗流程之規劃 ......................................................................... 48
3-2 水質項目與分析方法 ................................................................ 49
3-2-1 pH與水溫 ......................................................................... 49
3-2-2 導電度 .............................................................................. 50
3-2-3 氨氮 .................................................................................. 50
3-2-4 硝酸鹽氮 .......................................................................... 50
3-2-5總溶解固體 ....................................................................... 51
3-2-6 溶解性有機碳 .................................................................. 51
3-2-7 UV254 ................................................................................. 51
3-2-8 生物可利用有機碳 .......................................................... 52
3-2-9餘氯 ................................................................................... 64
3-2-10 三鹵甲烷生成潛勢 ........................................................ 64
3-2-11 鹵化乙酸生成潛勢 ........................................................ 67
3-2-12 掃描式電子顯微鏡 ........................................................ 72
3-3 微生物馴養 ................................................................................ 73
3-3-1活性碳 ............................................................................... 73
3-3-2人工合成基質 ................................................................... 74
3-3-3實驗用水 ........................................................................... 75
3-4 活性碳生物處理系統 ................................................................ 75
3-4-1儀器與設備 ....................................................................... 77
第四章 結果與討論 ................................................................................ 79
4-1 活性碳馴養 ................................................................................ 79
4-1-1粉狀生物活性碳馴養 ....................................................... 79
4-1-2 粒狀生物活性碳馴養 ...................................................... 82
4-2 曝氣實驗 .................................................................................... 86
4-3 粉狀生物活性碳處理系統 ........................................................ 87
4-3-1生物可利用有機碳 ........................................................... 88
4-3-2 溶解性有機碳 .................................................................. 90
4-3-3 UV254 ................................................................................. 92
4-3-4 三鹵甲烷生成潛勢 .......................................................... 94
4-3-5 鹵化乙酸生成潛勢 .......................................................... 97
4-4 粒狀生物活性碳處理系統 ...................................................... 103
4-4-1生物可利用有機碳 ......................................................... 104
4-4-2溶解性有機碳 ................................................................. 106
4-4-3 UV254 ............................................................................... 108
4-4-4三鹵甲烷生成潛勢 ......................................................... 110
4-4-5 鹵化乙酸生成潛勢 ........................................................ 113
4-5 粒狀與粉狀生物活性碳處理系統成效比較 .......................... 118
4-6二座高級淨水場處理效能比較 ............................................... 123
4-6-1 溶解性有機碳 ................................................................ 124
4-6-2 生物可利用有機碳 ........................................................ 126
第五章結論與建議 ................................................................................ 129
5-1結論 ........................................................................................... 129
5-2 建議 .......................................................................................... 130
參考文獻 ................................................................................................. 131
口試委員審查意見及答覆 ........................................................................ 1
參考文獻 References
Adham, S.S., V.L. Snoeyink, M.M. Clark, and C. Anselme, (1993), “Predicting and verifying TOC removal by PAC in pilot scale UF system.” J.AWWA., 88(12), pp.58-68.
Ahn, K. H., H. Y. Cha, I. T. Yeom and K. G. Song, (1998), “Application of nanofiltration for recycling of paper regeneration wastewater and characterization of filtration resistance.” Desalination,119, pp.169-176.
Aimar P., Pignon F., Magnin A., Piau J-M and Cabane B., (1998), “Structural characterisation of deposits formed during frontal filtration.” J. Mem. Sci., 174(2), pp.189-204.
Amy,G. L.,R. A.Sierka, J.Bedssem,D. Prize, and Lo Tan, (1992), “Molecular size distributions of dissolved organic matter.” JAWWA., pp.67-75.
Anselme, C. et al., (1991), “Optimum use of membrane processes in drinking water treatment.” paper presented at the 19th IWSA Congress, Budapest, Hungary.
Arbuckle, T. E., Hrudey, S. E., Krasner, S. W., Nuckols, J. R., Richardson, S. D., Singer, P., Mendola, P., Dodds, L., Weisel, C., Ashley, D. L., Froese, K. L., Pegram, R. A., Schultz, I. R., Reif, J., Bachand, A. M., Benoit, F. M., Lynberg, M., Poole, C. and Waller, K., (2002), “Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop, Environmental Health Perspectives.” Environ Health Perspect, 110(1), pp.53-60.
AWWARF (1993b), Assimilable organic carbon measurement techniques, AWWA Research Foundation and American Water Works Association, Denver, CO.
Bank, J. and Wilson, D., (2002), “Low cost solution for trihalomethanes compliance, journal of the chartered institution of water and environmental management.” 16(4), pp.264-269.
Barber, L.B., Leenheer, J.A., Noyes, T.I. and Stiles, E.A., (2001), “Nature and transformation of dissolved organic matter in treatment wetlands.” Environ. Sci. Technol., 35, pp.4805–4816.
Batterman, S., Zhang, L. and Wang, S., (2000), “Quenching of chlorination disinfection by-products formation in drinking water by hydrogen peroxide.” Water Research, 34(5), pp.1652-1658.
Becker, W. C. and O`Mellia, C. R., (2001), “Ozone: its effect on coagulation and filtration, Water Science and Technology.” Water Supply, 1(4), pp.81-88.
Bian R., Watanabe Y., Ozawa G. and Tambo N., (1997), “Removal of natural organic matters, iron and manganese by ultrafiltration with coagulation.” J. Japan Wat. Works Assoc., 66(4), pp.24-33.
Bourgeous K. N., Darby J. L., and Tchobanoglous G., (2001), “Ultrafiltration of wsatewater:effect of particles, mode of operation, and backwash effectiveness.” Wat. Res., 35(1), pp.77-90.
Camel, V. and A. Bermon, (1998), “The use of ozone and associated oxidation process in drinking water treatment.” Wat. Res., 32(11), pp. 3208-3222.
Cantor, K. P., Lynch, C. F., Hildesheim, M. E., Dosemeci, M., Lubin, Alavanja, J. and Craun, G., (1998), “Drinking water source and chlorination by-products: I. Risk of bladder cancer.” Epidemiology, 9(1), pp.21-28.
Carlson, M. A., K. M. Heffernan, C. C. Ziesemer, and E. G. Snyder, (1994), “Comparing two GAC for Adsorption and Biostabilization.” J. Amer. Water Works Assoc, 86(3), pp. 91-102.
Chang Y. and Benjamin M. M., (1996), “Iron oxide adsorption and UF to remove NOM and control fouling.” American Water Works Association Journal., 88(12), pp. 74-88.
Chen, P. H., C. H. Jenq and K. M. Chen, (1996), “Evaluation of granular activated carbon for removal od trace organic compounds in drinking water” Environment International, 22( 3), pp. 343-359.
Cheryan, M., (1998), “Ultrafiltration and Microfiltration Handbook.” Technomic Publishing Company, Lancaster.
Christman R. F., Norwood D. L., Millington D. S., Johnson J.D. and Steven A. A., (1983), “Identity and yields of major halogenated products of aquatic fulvic acid chlorination.” Environmental Science and Technology, 17(10), pp. 625-628.
Collins, M.R., Amy, G. L., and Steelink, C., (1986), “Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic organic matter: implications for removal during water treatment.” Environ. Sci..Technol., 20(10), pp. 1028-1032.
Dumeau, C. and V. Boisdon, (1998), “Ozone disinfection criteria for contactor design.” Blackwell Science Ltd, Water Supply, 16(1/2), pp. 419-442.
Escobar, I. C. and A. A. Randall, (2000), “Sample storage impact on the assimilable organic carbon (AOC) bioassay.” Wat. Res., 34(5), pp. 1680-1686.
Escobar, I. C. and Randall, A. A., (2001), “Ozone and distribution system biostability.” Journal of American Water Works Association, 93(10), pp. 77-89.
Fan, F. S. and Zhou, H. D., (2007), “Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment.” Environmental Science and Technology, 41(7), pp. 2523-2528.
Gai, X. J. and Kim, H. S., (2008), “The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment.” Desalination, 225, pp. 288-300.
Galapate, R. P., E. Augustianf, A. U. Baes, and M. Okada, (2001), “Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential.” Wat. Res., 35(9), pp. 2201~2206.
Gallard, H. and Gunten, U. V., (2002), “Chlorination of natural organic matter: kinetic of chlorination and of THM formation.” Wat, Res., 36, pp. 65-74.
Geldreich, E.E., (1996), “Biofilms in water distribution systems.” Microbial Quality of Water Supply in Distribution System, Lewis publisher, Boca Raton, Florida.
Goel, S. H., M. Raymond, and E. J. Bouwer, (1995), “Biodegradation of NOM: Effect of NOM source and ozone dose.” J.AWWA., 85(1), pp. 90-105.
Golfinopoulos, S. K., (2000), “The occurrence of trihalomethanes in the drinking water in Greece.” Chemosphere, 41, pp. 1761-1767.
Gopal, K., Tripathy S. S., Bersillon J.L., Dubey S.P, (2007), “Chlorination byproducts, their toxicodynamics and removal from drinking water.” Journal of Hazardous Materials , 140(1-2), pp. 1-6
Graham, N. J. D., V. E. Wardlaw, R. Perry and J. Q. Jiang, (1998), “The significance of algae as trihalomethane precursors.” Wat. Sci. Tech., 37(2), pp. 83-89.
Hagen, K., (1998), “Uses of membranes for drinking water treatment.” Blackwell Science Ltd, Water Supply, 16(16), pp. 313-340.
Harish, A., Mark. W., Le, C. and Kevin, L. D., (1997), “DBP occurrence survey.” Journal American Water Works Association, 89(6), pp. 60-68.
Hossein, p., Stevens, A.A., (1995), “Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlornattion.” 29(9), PP. 2059-2062.
Huang, H., Lee, N. H., Young, T., Gary, A., Lozier, J. C. and Jacangelo, J. G., (2007), “Natural organic matter fouling of low-pressure, hollow-fiber membranes: effects of NOM source and hydrodynamic conditions.” Water Research, 41(17), pp. 3823-3832.
Huck, P. M., (1990), “Measurement of biodegradable organic matter and bacterial growth potential in drinking water.” Jour. AWWA, 82(7), pp. 78-86.
Ichihashi, K., K. Teranshi and A. Ichimura, (1999), “Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite Ions.” Wat. Res., 33(2), pp. 477-483.
Jacangelo, J. G., Aieta, E. M., Carns, K.E., Cummings, E. W., and Mallevialle J., (1989), “Assessing hollow-fiber ultrafiltration for particulate removal.” J. AWWA, 89.
Kemmy, F.A., Fry, J.C. and Breach, R.A., (1989), “Development and operational implementation of a modified and simplified method for determination of assimilable organic carbon (AOC) in drinking water.” Wat. Sci. Tech. , 21(3), pp. 155-159.
Khan, E., R. W. Babcock, I. H. Suffet and M. K. Stenstorm, (1998), “Biodegradable dissolved organic carbon for indicating wastewater reclaimation plant performance and treated wastewater quality.” Wat. Environ. Res., 7(5), pp. 1033-1040.
Khan, E., R. W. Babcock, Suffet I. H. and Stenstorm, M. K., (1998), “Biodegradable dissolved organic carbon for indicating wastewater reclaimation plant performance and treated wastewater quality.” Water Environmental Research, 70(5), pp. 1033-1040.
Kitis, M., Karanfil, T., Wigton, A. and Kilduff, J. E., (2002), “Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation.” Water Research, pp. 3834-3848.
Korshin G. V., M. M. Benjamin, and R. S. Sletten, (1997), “Adsorption of natural organic matter (NOM) on iron oxide: effect on NOM compounds and formation of organo-halide compounds during cchlorination.” Water Res., 31(7), pp. 1643-1650.
Korshin, G. V., C. W. Li, and M. M. Benjamin, (1997), “The decrease of UV absorbance as an indicator of TOX formation.” Water Res., 31(4), pp. 946-949.
Korshin, G. V., J. F. Ferguson and A. N. Lancaster, (2000), “Influence of natural organic matter on the corrosion of leaded brass in potable water.” Corrosion Science, 42(1), pp. 53-66.
Krasner S. W., J. P. Croue, J. Buffle, and E. M. Perdue, (1996), “Three approaches for characterizing NOM.” AWWA., 88(6), pp. 66-79.
Krasner, S. W., W. H. Glaze, H. S. Weinberg, P. A. Daniel, and I. N. Najm, (1993), “Formation and control of waters containing bromide.” J. AWWA, 85(1), pp. 73-81.
Krasner, S.W., (1999), “Chemistry of disinfection by-products formation on formation and control of disinfection by-products in drinking water.” Chapter 2. American Water Works Association.
Kusakabe, K., S. Aso, J. -I. Hayashi, K. Isomura and S. Morooka, (1990), “Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with U.V. irradiation.” Wat. Res., 24(19), pp. 781-785.
Langlais, B., Reckhow, D. A., and Brink, D. R., (1991), “Practical application of ozone.” Ozone In Water Treatment : Application and Engineering.” AWWA RF and Lewis Publishers, Chelsea, Michigan.
LeChevallier, M.W., (1999), “The Case for Maintaining a Disinfectant Residual.” Jour. AWWA, 91(1), pp. 86-94.
Le-Clech, P., V. Chen, and T. A. G. Fane, (2006), “Fouling in membrane bioreactors used in wastewater treatment.” Journal of Membrane Science, 284, pp. 17-53.
Lee, S.H., O’Connor, J.T. and Banerji, S.K., (1980), “Biologically mediated corrosion and its effects on water quality in distribution systems.” Jour. AWWA, 72(11), pp. 636-645.
Levy, R.V., Hart, F.L. and Cheetham, R.D., (1986), “Occurrence and public health significance of invertebrates in drinking water systems.” Jour.AWWA.,78 (9), pp. 105-110.
Li, X.Y. and Chu, H. P., (2003), “Membrane bioreactor for drinking water treatment of polluted surface water supplies.” Water Research, 37(19), pp. 4781-4791.
Liang, C., Chiang, P., Chang, E., (2007), “Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters.” Water Research, 41(15), pp. 3241–3250.
Liang, L, and Singer, P. C., (2003), “Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water.” Water Science and Technology, pp. 2920-2928.
Marhaba T. F. and Van D., (2000), “The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant,” Journal of Hazardous Materials, A74, pp. 133-147.
Marhaba T. F. and Washington M. B., (1998), “Drinking water disinfection and byproducts: history and current practice, Advances in Environmental Research.” 2(1), pp. 103-115.
Membrane Products Dept. b. Polyethylene Microporous Hollow fiber Membrane. Mitsubishi Rayon Co., LTD.
Mohamed, A. E. and Ali, R. K., (1995), “THMs formation during chlorination of raw NILE river water.” Wat. Res., 29, pp. 375-378.
Monika, P., Koen, H., and Chris, K., (2005), “Investigation of assimilable organic carbon (AOC) in flemish drinking water.” Wat. Res., 39, pp. 2259-2266
Nieminski, E. and D. Evans, (1995), “Pilot testing of trace metals removal with ozone at snowbird ski resort.” Ozone Sci. Engng., 17, pp. 297-309.
Nikolaou A. D., Kostopoulou M. N. and Lekkas T. D., (1999), “Organic by-products of drinking water chlorination: a review.” Global Nest: Int J., 1(3), pp. 143-156.
Nilson, J.A. and F.A. DiGian, (1996), “Influence of NOM composition on nanofiltration.” J.AWWA., 88(5), pp.53-66.
Nishijima, W. and M. Okada, (1998), “Particle Separation as a pretreatment of an advanced drinking water treatment process by ozonation and biological activated carbon.” Water Science and Technology, 37, pp. 117-124.
Nishilima, W., Kim, W. H., Shoto, E. and Okada, M., (1998), “The performance of an ozonation-biological activated carbon process under long term operation.” Wat. Sci. Tech. 38(6), pp. 163-169.
Nobelt, J., L. Schweitzer, E. Ibrahim, K. D. Stolzenbach, L. Zhou and I. H. Suffet, (1999), “Evaluation of a taste and odor incident on the ohio river.”Wat. Sci. Tech., 40(6), pp. 185-193.
Pearce, G. K., Heijnen, M. and Reckhouse, J., (2002), “Using ultrafiltration membrane technology to meet UK cryptosporidium regulations.” Membrane Technology, 2002(1), pp. 6-9.
Pirbazari, M., Badriyha, B.N. and Ravindran, V., (1992), “MF-PAC for treating waters contaminated with natural and synthetic organics.” J. AM. WAT. Works. Assoc., 83(12), pp. 61-68.
PrèVost, M., Coallier, J., Mailly, J., Desjardins, R., And Duchesne, D., (1992), “Comparison of biodegradable organic carbon (BDOC) techniques for process control.” J. Water SRT-Aqua , 41(3), pp. 141-150.
Reynolds, T.D. and P.A. Richards, (1996), “Unit operations and processes in environmental engineering.” 2nd ed., PWS Publishing Company.
Rodriguez, M. J. and J. B. Serodes, (2001), “Spatial and temporal evolution of trihalomethanes in three water distribution systems.” Wat. Res., 35(6), pp. 1572-1586.
Rook, J. J., (1974), “Formation of Haloforms During Chlorination of Natural Waters.” Water Treatment Exam., 23(5), pp. 234-242.
Sakol, D. and K. Konieczny, (2004), “Application of coagulation and conventional filtration in raw water pretreatment before microfiltration membranes.” Desalination, 162, pp. 61-73.
Sánchez-Polo, M., Salhi, E., Rivera-Utrilla, J. and von Gunten, U., (2006), “Combination of ozone with activated carbon as an alternative to conventional advanced oxidation processes.” Ozone Sci. Eng., 28(4), pp. 237-245.
Seo, G. T., Moon, C. D., Chang, S. W. and Lee, S. H., (2004), “Long term operation of high concentration powdered activated carbon membrane bioreactor for advanced water treatment.” Water Science Technology, 50(8), pp. 81-87.
Servais, P., Billen, G. and HascoëT, M.C., (1987), “Determination of The Biodegradable Fraction of Dissolved Organic Matter in Waters.” Wat. Res., 21(4), pp. 445-450.
Servais, P., Laurent, P. and Randon, G., (1995), “Comparison of the bacterial dynamics in various french distribution system.” J Water SRT-Aqua., 44(1), pp. 10-17.
Shen, L. Q., Z. K. Xu, Z. M. Liu and Y. Y. Xu, (2003), “Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/ polyetherimide blends: preparation, morphologies and anti-fouling properties.” Journal of Membrane Science, 218, pp. 279-293.
Shukairy, H.M., R.J. Miltner, and R.S. Summers, (1995), “Bromide’s effect on DBP formation speciation and control.” Part 2, Biotreatment, Jour.AWWA, 86(10), PP. 71-82.
Singer, P. C., (1999), “Humic substances as percursors for potentially harmful disinfection by-products”, Wat. Sci. Tech., 40(9), pp. 25~30.
Singer, P. C., (2000), “Formation and control of disinfection by-products in drinking water: an update.” The 6th International Workshop on Drinking Water Quality Management and Treatment Technology, pp. 149-153.
Stanley States et al., (2000), ”Membrane filtration as posttreatment,” J.AWWA., 92(8), pp. 59-68.
Stephenson, T., Judd, S., and Brindle, K., (2000), “Membrane Bioreactors for Wastewater Treatment.” IWA Publishing London.
Stevens, A. A., Moore, L. A. and Miltner, R. J., (1989), “Formation and control of non trihalomethane disinfection by-products.” Journal American Water Works Association, 81(8), pp. 54-59.
Su, D. J. and Gao, N. Y., (2005), “A study of removing organic matters in slightly -polluted water by an ozone-active carbon combined process.” Ind.WaterWaste-water, 32, pp. 26-28.
Takahashi, M., T. Nakai, Y. Satoh and Y. Katoh, (1995), “Ozonolysis of humic acid and its effect on decoloration and biodegradability.” Ozone Sci. Engng., 17, pp. 511-525.
Tensel B., Bao W. Y., Tansel, I. N., (2000), “Characterization of fouling kinetics in ultrafiltration system by resistances in series model.” Desalination, 129, pp. 7-14.
Terashima, K. and M. Miwa, (1999), “Operational condition of advanced water treatment in Kunijima purification plant and its performance evaluation.” The 5th International Workshop on Drinking Water Quality Management and Treatment Technology.
Tian, J. Y., Liang, H., You, S. J., Tian, S. and Li ,G. B., (2008), “Membrane coagulation bioreactor (MCBR) for drinking water treatment.” Water Research, 42, pp. 3910-3920.
Trussell, R. R. and M. D. Umphres, (1978), “The formation of trihalomethanes.” J. AWWA, 70(11), pp. 604-611.
Tsai, H. H., Ravindran, V., Williams, M. D. and Pirbazari, M., (2004), “Forecasting the performance of membrane bioreactor process for groundwater denitrification.” Journal of Environmental Engineering and Science, 3(6), pp. 507-521.
Van Der Kooij D., (1995), “Significance and assessment of the biological stability of drinking water.” The Handbook of Environmental Chemistry. J. Hrubec, 5, ed., Springer-Verlag, Berlin, Germany. pp. 89-102.
Van Der Kooij, D. and Veenendaal, H.R., (1995), “Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures.” SWE 95.002, KIWA, Nieuwegein, Netherlands.
Van Der Kooij, D., (1990), “Assimilable organic carbon (AOC) in drinking water.” in Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York.
Van der Kooij, D., Hijnen, W.A.M. and Kruithof, J.C., (1989), “The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water.” Ozone: Science and Engineering, 11, pp. 297-311.
Van Der Kooij, D., Visser, A. and Hijnen, W. A. M., (1982), “Determining the concentration of easily assimilable organic carbon in drinking water.” Jour. AWWA, 74(10)pp. 540-545.
Villanueva, C. M., Kogevinas, M. and Grimalt, J. O., (2003), “Haliacetic acids and trihalomethanes in fished grinking waters from heterogeneous sources.” Water Research, 37, pp. 953-958.
Wakewan, R., (1996), “Fouling in Crossflow Ultra-and Micro-Filtration.” Membrane Technology, 70, pp. 5-8.
Wang, X. D., Wang, L., Liu, Y. and Duan, W. S., (2007), “Ozonation pretreatment for ultrafiltration of the secondary effluent.” Journal of Membrane Science, 287(2), pp. 187-191.
Wataru, T., Haruo, K., Tomohiro, I. and Takashi, I., (1998) “Membrane filtration and pre-treatment by GAC.” Desalination, 119(1-3), pp. 323-326.
White, M. C., J. D. Thompson, G. W. Harrington and P. C. Singer, (1997), “Evaluating Criteria for Enhanced Coagulation Compliance.” J. AWWA, 89(5), pp. 64-77.
Williams, D., LeBel, G.L. and Benoit, F., (1997), “Disinfection by-products in Canadian drinking water.” Chemosphere, 34(29), pp. 299-316.
Xie, Y. F., (2004), “Disinfection by-products in drinking water: formation, analysis and control.” Lewish Publishers. USA.
Yamamoto K., (1994), “Membrane filtration in rapid filtration, Biological Filtration and Membrane Filtration.” Gihodo Shuppan, Tokyo, 255.
Zhang, M. M., Li, C., Benjamin, M. M. and Chang, Y. J., (2003), “Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment.” Environmental Science and Technology, 37(8), pp. 1663-1669.
范姜仁茂、莊連春、曾迪華、廖述良、游勝傑、梁德明,(2009),薄膜生物反應器(MBR)於廢水處理之技術評析,工業污染防治,109期,49-96頁。
張慧?隉A(2004),台灣地區飲用水中含鹵乙酸之分析與流佈調查,國立台灣大學公共衛生學院環境衛生研究所碩士論文。
蔣本基,(1987),比較活性碳及活性碳纖維對揮發性有機物之吸附及再生效率之研究I,行政院國科會專題研究報告,NSC76-0410-E002-23。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.216.121.55
論文開放下載的時間是 校外不公開

Your IP address is 18.216.121.55
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code