Responsive image
博碩士論文 etd-0704111-133607 詳細資訊
Title page for etd-0704111-133607
論文名稱
Title
應用磁性氧化鐵奈米粒子以螢光偵測方法檢測特定受質與兒茶多酚胺類化合物
Fe3O4 Nanoparticles for Fluorescence Sensing of Specific Substrate and Catecholamines
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-17
繳交日期
Date of Submission
2011-07-04
關鍵字
Keywords
酪胺酸氧化酶、兒茶多酚胺、過氧化酶、多巴胺、過氧化氫、磁性氧化鐵奈米粒子、葡萄糖、酪胺酸
Tyrosine, Catalysis, Poly(diallyldimethylammonium chloride), Catecholamine, Dopamine, Tyrosinase., Amplex ultrared, Iron oxide nanoparticles, Fluorescence, Glucose
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
本篇論文將利用磁性氧化鐵奈米粒子 (Iron Oxide Nanoparticles, Fe3O4 NPs) 獨特之化學性質,結合Amplex UltraRed螢光試劑,來檢測樣品溶液中所含有的過氧化氫之濃度,更進一步地運用此系統來檢測樣品中葡萄糖、半乳糖、膽鹼之含量;此外,更運用磷苯二酚官能基會在Fe3O4 NPs表面形成共價鍵結,抑制Fe3O4 NPs之化學活性,用此檢測生物體內兒茶酚胺類 (Catecholamines) 之含量。
一、利用磁性氧化鐵奈米粒子結合過氧化氫螢光試劑檢測特定受質在樣品中之含量:在本篇研究中,利用Fe3O4 NPs作為過氧化酶之角色,催化溶液中所含有的過氧化氫與Amplex UrtaRed試劑 (AUR) 之間的反應,反應後生成具有螢光的物質,而所生成螢光物質的濃度,會隨著過氧化氫濃度變化而有所改變,因此我們可以藉由偵測螢光強度得知過氧化氫在受質中的濃度;利用Fe3O4 NPs作為過氧化酶的實驗結果,可偵測過氧化氫的最低濃度為1.0 μM。
此外,基於上述Fe3O4 NPs作為過氧化酶的特性,可利用PDDA-Fe3O4 NPs以正負靜電吸引的方式將生物氧化酶吸附在表面上,形成Oxidase-PDDA-Fe3O4 NPs,由於常見的生物氧化酶例如葡萄糖氧化酶 (Glucose Oxidase, GOx)、半乳糖氧化酶 (Galactose Oxidase, GAOx) 與膽鹼氧化酶 (Choline Oxidase, COx),會與其特定受質 (如:葡萄糖、半乳糖與膽鹼) 形成專一性的氧化代謝,代謝後會生成過氧化氫,因此可以利用Oxidase-PDDA-Fe3O4 NPs與AUR來偵測溶液中受質被氧化酶代謝後的過氧化氫之濃度,藉此得知溶液中受質的起始濃度;偵測結果最低可測得的葡萄糖、半乳糖與膽鹼的濃度分別為3.0、 2.0與20 μM。另外,此實驗更可成功檢測出人體血清中葡萄糖的含量為4.72 mM (85.0 mg/dl),與實際值誤差為5.5%。
二、利用兒茶多酚胺抑制磁性氧化鐵奈米粒子之催化活性進行兒茶多酚胺類之檢測:此篇研究延續上一篇Fe3O4 NPs的催化系統,引用先前報導中指出的磷苯二酚官能基會與Fe3O4 NPs以共價鍵的形式相互鍵結之結果,來作為此篇研究之基礎,然而磷苯二酚鍵結在Fe3O4 NPs的表面,勢必會影響Fe3O4 NPs之催化活性,所以藉此分析常見於生物體中的兒茶多酚胺類化合物 (Catecholamines) 如多巴胺 (Dopamine, DA)、腎上腺素 (Epinephrine, EP)、正腎上腺素 (Norepinephrine, NEP) 與多巴 (L-DOPA) 抑制Fe3O4 NPs催化活性之能力,所得結果DA、EP、NEP與L-DOPA可達到抑制的最低濃度分別為20、20、10、10 nM。
此外,由於酪胺酸 (Tyrosine, TY) 是合成Catecholamines化合物的起始物,在生物體中扮演著極為重要的角色,更是在此合成步驟中被視為不可或缺的化學物質,所以此篇研究更針對TY經酪胺酸氧化酶 (Tyrosinase) 氧化形成L-DOPA做進一步的探討,由於TY氧化的產物L-DOPA具有Catechol官能基,並已證實會抑制Fe3O4 NPs的催化活性,因此可藉此觀察TY被Tyrosinase氧化的整體反應過程、反應時間與半抑制濃度IC50。
Abstract
The first study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe3O4 nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H2O2, the reaction pH between Fe3O4 NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe3O4 NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe3O4 NPs and oxidase for the quantification of specific substrates through the H2O2-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe3O4, galactose oxidase-Fe3O4, and choline oxidase-Fe3O4 composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method.
The second study follows the first one. Using the catalytic activity of Fe3O4 NPs with AU to detect four kinds of neurotransmitter, such as dopamine, L-DOPA, adrenaline (epinephrine) and noradrenaline (norepinephrine). Because of there is specific interaction between Fe3O4 NPs and catecholamines (CAs), the Fe3O4 NPs will form CAs-Fe3O4 NPs composites in presence of CAs. The CAs on the Fe3O4 NPs surface must shelter the reaction between AU and H2O2, cause the fluorescence to be turned-off. The CAs just like a inhibitor, to inhibit the catalytic activity of Fe3O4 NPs. Therefore, we could use this inhibited system to detect the CAs compound concentration in the real sample.
目次 Table of Contents
中文摘要... i
英文摘要… iii
目錄… iv
圖表目錄… vii
縮寫表… ix
第一章 利用功能化磁性氧化鐵奈米粒子結合過氧化氫螢光試劑檢測特定受質在樣品中之含量
一、前言…1
二、實驗部分…4
2.1 藥品與溶液配製… 4
2.2 儀器裝置…5
2.3 磁性氧化鐵奈米粒子之合成與修飾… 6
2.4 過氧化氫與特異性受質之檢測步驟… 7
2.5 真實樣品血清之葡萄糖檢測… 8
三、結果與討論… 9
3.1 過氧化氫顯色試劑靈敏度之探討與比較… 9
3.2 最佳化反應條件之探討… 11
3.3 Fe3O4 NPs粒徑大小對催化活性之影響… 14
3.4 Fe3O4 NPs催化系統… 16
3.4.1 過氧化氫濃度之檢量… 16
3.4.2 Fe3O4 NPs重複催化之探討… 18
3.5 Oxidase-Fe3O4 NPs雙催化系統…20
3.5.1 Fe3O4 NPs與PDDA-Fe3O4 NPs催化活性之比較… 20
3.5.2 Oxidase-Fe3O4 NPs最佳化反應時間與結構之探討…22
3.5.3 利用Oxidase-Fe3O4 NP催化系統檢測特異性受質… 25
3.5.4 Oxidase-Fe3O4 NPs重複催化之探討…28
3.5.5 GOx-Fe3O4 NPs選擇性之探討… 30
3.6 真實樣品血清中葡萄糖之檢測… 32
3.7 其他類似過氧化酶的奈米材料之比較…34
四、結論…36
五、參考文獻…37
第二章 利用兒茶多酚胺抑制磁性氧化鐵奈米粒子之催化活性進行兒茶多酚類之檢測
一、前言…41
二、實驗部分…45
2.1 藥品與溶液配製…45
2.2 儀器裝置…47
2.3磁性氧化鐵奈米粒子之合成… 48
2.4證實DA-Fe3O4 NPs形成之實驗步驟…49
2.4.1 運用毛細管電泳證實之步驟… 49
2.4.2 運用電化學循環伏安法證實之步驟… 50
2.5 利用酪氨酸酶檢測樣品中酪胺酸之實驗步驟…51
2.6 真實樣品尿液之處理與檢測… 52
三、結果與討論… 53
3.1 證實CAs-Fe3O4 NPs之形成…53
3.1.1利用毛細管電泳方法證實…53
3.1.2 利用電化學—循環伏安法證實…55
3.2抑制Fe3O4 NPs催化活性系統之最佳化條件…57
3.3 CAs類化合物之偵測與探討…60
3.3.1 以抑制活性的方式對CAs類化合物樣品進行檢量…60
3.3.2 以IC50探討DA、L-DOPA、AD與NAD之抑制效果…64
3.4 CAs偵測系統選擇性之探討…67
3.5 利用酪氨酸酶檢測樣品溶液中酪氨酸化合物…69
3.5.1 酪氨酸酶最佳化反應時間與濃度之探討…70
3.5.2 樣品溶液中酪氨酸化合物之定量…73
3.6 真實樣品尿液中CAs濃度之檢量…75
四、結論…77
五、參考文獻…78
參考文獻 References
1. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. ─Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications∥ Chem. Rev. 2008, 108, 2064-2110.
2. Gupta, A. K.; Gupta, M. ∥ Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications∥ Biomaterials 2005, 26, 3995-4021.
3. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. ─Magnetic Nanoparticle Design for Medical Diagnosis and Therapy∥ J. Mater. Chem. 2004, 14, 2161- 2175.
4. Lin, M. M.; Kim, D. K.; Haj, A. J. E.; Dobson, J. ∥ Development of Superpara- magnetic Iron Oxide Nanoparticles (SPIONS) for Translation to Clinical Applications∥ IEEE Trans. Nanobiosci. 2008, 7, 298-305.
5. Thomas, C. R.; Ferris, D. P.; Lee, J. H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J. S.; Cheon, J.; Zink, J. I. ∥ Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles∥ J. Am. Chem. Soc. 2010, 132, 10623-10625.
6. Yoza, B.; Matsumoto, M.; Matsunaga, T. ∥ DNA Extraction Using Modified Bacterial Magnetic Particles in the Presence of Amino Silane Compound∥ J. Biotechnol. 2002, 94, 217-224.
7. Yoza, B.; Arakaki, A.; Matsunaga, T. ∥ DNA Extraction Using Bacterial Magnetic Particles Modified with Hyperbranched Polyamidoamine Dendrimer∥ J. Biotechnol. 2003, 101, 219-228.
8. White, B. R.; Stackhouse, B. T.; Holcombe, J. A. ∥ Magnetic γ-Fe2O3 Nanoparticles Coated with Poly-l-cysteine for Chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II)∥ J. Hazard. Mater. 2009, 161, 848-853.
9. Latorre, M.; Rinaldi, C. ∥ Applications of Magnetic Nanoparticles in Medicine: Magnetic Fluid Hyperthermia∥ P. R. Health Sci. J. 2009, 28, 227-238.
10. Zhang, J.; Zhuang, J.; Gao, L.; Zhang, Y.; Gu, N.; Feng, J.; Yang, D.; Zhu, J.; Yan, X. ─Decomposing Phenol by the Tidden Talent of Ferromagnetic Nanoparticles∥ Chemosphere 2008, 73, 1524-1528.
11. Zhang, S.; Zhao, X.; Niu, H.; Shi, Y.; Cai, Y.; Jiang, G. ─Superparamagnetic Fe3O4 Nanoparticles as Catalysts for the Catalytic Oxidation of Phenolic and Aniline Compounds∥ J. Hazard. Mater. 2009, 167, 560-566.
12. Wang, N.; Zhu, L.; Wang, D.; Wang, M.; Lin, Z.; Tang, H. ─Sono-assisted Preparation of Highly-efficient Peroxidase-like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2∥ Ultrason. Sonochem. 2010, 17, 526-533.
13. Wang, N.; Zhu, L.; Wang, M.; Wang, D.; Tang, H. ─Sono-enhanced Degradation of Dye Pollutants with the Use of H2O2 Activated by Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetic∥ Ultrason. Sonochem. 2010, 17, 78-83.
14. Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. ∥Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles∥ Nat. Nanotechnol. 2007, 2, 577-583.
15. Peng, F. F.; Zhang, Y.; Gu, N. ─Size-dependent Peroxidase-like Catalytic Activity of Fe3O4 Nanoparticles∥ Chin. Chem. Lett. 2008, 19, 730-733.
16. Chang, Q.; Deng, K.; Zhu, L.; Jiang, G.; Yu, C.; Tang, H. ─Determination of Hydrogen Peroxide with the Aid of Peroxidase-like Fe3O4 Magnetic Nanoparticles as the Catalyst∥ Microchim. Acta 2009, 165, 299-305.
17. Liu, S.; Lu, F.; Xing, R.; Zhu, J. J. ∥Structural Effects of Fe3O4 Nanocrystals on Peroxidase-like Activity∥ Chem. Eur. J. 2011, 17, 620-635.
18. Yu, F.; Huang, Y.; Cole, A. J.; Yang, V. C. ─The Artificial Peroxidase Activity of Magnetic Iron Oxide Nanoparticles and Its Application to Glucose Detection∥ Biomaterials 2009, 30, 4716-4722.
19. Wei, H.; Wang, E. ─Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection∥ Anal. Chem. 2008, 80, 2250-2254.
20. Yu, C. J.; Lin, C. Y.; Liu, C. H.; Cheng, T. L.; Tseng, W. L. ∥ Synthesis of Poly(diallyldimethylammonium chloride)-coated Fe3O4 Nanoparticles for Colorimetric Sensing of Glucose and Selective Extraction of Thiol∥ Biosens. Bioelectron. 2010, 26, 913-917.
21. Oliver, N. S.; Toumazou, C.; Cass, A. E. G.; Johnston, D. G. ─Glucose Sensors: A Review of Current and Emerging Technology∥ Diabetic Med. 2009, 26, 197-210.
22. Zhu, A.; Romero, R.; Petty, H. R. ∥Amplex UltraRed Enhances the Sensitivity of Fluorimetric Pyruvate Detection∥ Anal. Biochem. 2010, 403, 123-125.
23. Mazura, P.; Fohlerova, R.; Brzobohaty, B.; Kiran, N. S.; Janda, L. ─A New, Sensitive Method for Enzyme Kinetic Studies of Scarce Glucosides∥ J. Biochem.
Biophys. Methods 2006, 68, 55-63.
24. Ding, N.; Yan, N.; Ren, C.; Chen, X. ─Colorimetric Determination of Melamine in Dairy Products by Fe3O4 Magnetic Nanoparticles-H2O2-ABTS Detection System∥ Anal. Chem. 2010, 82, 5897-5899.
25. Srivastava, S.; Kotov, N. A. ─Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires∥ Accounts Chem. Res. 2008, 41, 1831- 1841.
26. Blin, J. L.; Gerardin, C.; Carteret, C.; Rodehuser, L.; Selve, C.; Stebe, M. J. ─Direct One-Step Immobilization of Glucose Oxidase in Well-Ordered Mesostructured Silica Using a Nonionic Fluorinated Surfactant ∥ Chem. Mater. 2005, 17, 1479–1486.
27. Wu, P.; He, Y.; Wang, H. F.; Yan, X. P. ─Conjugation of Glucose Oxidase onto Mn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose in Biological Fluids∥ Anal. Chem. 2010, 82, 1427-1433.
28. Jv, Y.; Li, B.; Cao, R. ─Positively-charged Gold Nanoparticles as Peroxidiase Mimic and Their Application in Hydrogen Peroxide and Glucose Detection∥ Chem. Commun. 2010, 46, 8017-8019.
29. Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. ─Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection∥ Adv. Mater. 2010, 22, 2206–2210.
30. Luo, W.; Li, Y-S.; Yuan, J.; Zhu, L.; Liu, Z.; Tang, H.; Liu, S. ─Ultrasensitive Fluorometric Determination of Hydrogen Peroxide and Glucose by Using Multiferroic BiFeO3 Nanoparticles as A Catalyst∥ Talanta 2010, 81, 901-907.
31. Liu, Y.; Yu, F. ∥ Substrate-specific Modifications on Magnetic Iron Oxide Nanoparticles as An Artificial Peroxidase for Improving Sensitivity in Glucose Detection∥ Nanotechnology 2011, 22, 145704.
32. Wang, X. X.; Wu, Q.; Shan, Z.; Huang, Q. M. ─BSA-stabilized Au Clusters as Peroxidase Mimetics for Use in Xanthine Detection∥ Biosens. Bioelectron. 2011, 26, 3614-3619.
33. Miao, Y.; Wang, H.; Shao, Y.; Tang, Z.; Wang, J.; Lin, Y. ─Layer-by-laye Assembled Hybrid Film of Carbonnanotubes/Iron Oxide Nanocrystals for Reagentless Electrochemical Detection of H2O2∥ Sens. Actuator B-Chem. 2009, 138, 182-188.
34. Zhang, L.; Zhai, Y.; Gao, N.; Wen, D.; Dong, S. ─Sensing H2O2 with Layer-by-layer Assembled Fe3O4–PDDA Nanocomposite Film∥ Electrochem. Commun. 2008, 10, 1524-1526.
35. Li, T.; Dong, S.; Wang, E. ─Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+-Modulated G-Quadruplex-Based DNAzymes∥ Anal. Chem. 2009, 81, 2144-2149.
36. Kong, D. M.; Xu, J.; Shen, H. X. ─Positive Effects of ATP on G-Quadruplex- Hemin DNAzyme-Mediated Reactions∥ Anal. Chem. 2010, 82, 6148-6153.
1. Wightman, R. M.; May, L. L.; Michael, A. C. ─Detection of Dopamine Dynamics in the Brain.∥ Anal. Chem. 1988, 60, 769A-779A.
2. Prters, J. L.; Yang, H.; Michael, A. C. ─Quantitative Aspects of Brain Microdialysis∥ Anal. Chim. Acta 2000, 412, 1-12.
3. Arreguin, S.; Nelson, P.; Padway, S.; Shirazi, M.; Pierpont C. ─Dopamine Complexes of Iron in the Etiology and Pathogenesis of Parkinson’s Disease∥ J. Inorg. Biochem. 2009, 103, 87-93.
4. Zhang, W.; Xie, Y.; Shiyun Ai, S.; Wan, F.; Wang, J.; Jin, L.; Jin, J. ─Liquid Chromatography with Amperometric Detection using Functionalized Multi-wall Carbon Nanotube Modified Electrode for the Determination of Monoamine Neurotransmitters and their Metabolites.∥ J. Chromatogr. B 2003, 791, 217-225.
5. Sabbioni, C.; Saracino, M. A.; Mandrioli, R.; Pinzauti, S.; Furlanetto, S.; Gerra, G.; Raggi, M. A. ─Simultaneous Liquid Chromatographic Analysis of Catecholamines and 4-hydroxy-3-methoxyphenylethylene Glycol in Human Plasma: Comparison of Amperometric and Coulometric Detection.∥ J. Chromatogr. A 2004, 1032, 65–71.
6. Yoshitake, T.; Kehr, J.; Yoshitake, S.; Fujino, K.; Nohta, H.; Yamaguchi, M. ─Determination of Serotonin, Noradrenaline, Dopamine and Their Metabolites in Rat Brain Extracts and Microdialysis Samples by Column Liquid Chromatography with Fluorescence Detection Following Derivatization with Benzylamine and 1,2-diphenylethylenediamine. J. Chromatogr. B 2004, 807, 177-183.
7. Zetterstrom, T.; Sharp, T.; Marsden, C. A.; Ungerstwdt, U. ∥ In Vivo Measurement of Dopamine and Its Metabolites by Intracerebral Dialysis : Hanges after d-Amphetamine∥ J. Neurochem. 1983, 41, 1769-1773.
8. Ali, S. R.; Ma, Y.; Parajuli, R. R.; Balogun, Y.; Lai, W. Y.-C.; He H. ─A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine∥ Anal.Chem. 2007, 79, 2583-2587.
9. Wang, G.; Sun, J.; Zhang, W.; Jiao, S.; Fang, B. ─Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid with LaFeO3 Nanoparticles Modified Electrode∥ Microchim. Acta 2009, 164, 357-362.
10. Zhang, L. ─Covalent Modification of Glassy Carbon Electrode with Cysteine For the Determination of Dopamine in the Presence of Ascorbic Acid∥ Microchim. Acta. 2008, 161, 191-200.
11. Zen, J.-M.; Hsu, C.-T.; Hsu, Y.-L.; Sue, J.-W.; Conte, E. D. ∥ Voltammetric Peak Separation of Dopamine from Uric Acid in the Presence of Ascorbic Acid at Greater Than Ambient Solution Temperatures∥ Anal. Chem. 2004, 76, 4251-4255.
12. Baldrich, E.; Gomeza, R.; Gabriel, G.; Munoz, F. X. ─Magnetic Entrapment for Fast, Simple and Reversible Electrode Modification with Carbon Nanotubes: Application to Dopamine Detection∥ Biosens. Bioelectron. 2011, 26, 1876-1882.
13. Chena, P.-Y.; Vittal, R.; Niena, P.-C.; Ho, K.-C. ─Enhancing Dopamine Detection using a Glassy Carbon Electrode Modified with MWCNTs, Quercetin, and Nafion∥ Biosens. Bioelectron.2009, 24, 3504-3509.
14. Baron, R.; Zayats, M.; Willner, I. ─Dopamine-, L-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles: Assays for the Detection of Neurotransmitters and of Tyrosinase Activity∥ Anal. Chem. 2005, 77, 1566-1571.
15. Shang, L.; Dong, S. ∥ Detection of Neurotransmitters by a Light Scattering Technique Based on Seed-mediated Growth of Gold Nanoparticles∥ Nanotechnology 2008, 19, 095502.
16. Kong, F.; Liu, H.; Dong, J.; Qian, W. ─Growth-Sensitive Gold Nanoshells Precursor Nanocomposites for the Detection of L-DOPA and Tyrosinase Activity∥ Biosen, Bioelectron. 2011, 26, 1902-1907.
17. Zhang, Y.; Li, B.; Chen, X.∥ Simple and Sensitive Detection of Dopamine in the Presence of High Concentration of Ascorbic Acid using Gold Nanoparticles as Colorimetric Probes∥ Microchim. Acta. 2010, 168, 107-113.
18. Zheng, Y.; Wang, Y.; Yang, X. ─Aptamer-Based Colorimetric Biosensing of Dopamine Using Unmodified Gold Nanoparticles∥ Sens. Actuator B-Chem. 2011, 156, 95-99.
19. Lin, Y.; Chen, Cuie.; Wang, C.; Pu, F.; Ren, J.; Qu, X.∥ Silver Nanoprobe for Sensitive and Selective Colorimetric Detection of Dopamine via Robust Ag–catechol Interaction∥ Chem. Commun. 2011, 47, 1181-1183.
20. Wu, H.-P.; Cheng, T.-L.; Tseng W.-L. ─Phosphate-Modified TiO2 Nanoparticles for Selective Detection of Dopamine, Levodopa, Adrenaline, and Catechol Based on Fluorescence Quenching∥ Langmuir 2007, 23, 7880-7885.
21. Gill, R.; Freeman, R.; Xu, J.-P.; Willner, I.; Winograd, S.; Shweky, I.; Banin, U. ─Probing Biocatalytic Transformations with CdSe-ZnS QDs∥ J. Am. Chem. Soc. 2006, 128, 15376-15377.
22. Freeman R.; Finder, T.; Gill, R.; Willner, I. ─Probing Protein Kinase (CK2) and Alkaline Phosphatase with CdSe/ZnS Quantum Dots∥ Nano Lett. 2010, 10, 2192-2196.
23. Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter E. E. ─Reactive Nature of Dopamine as a Surface Functionalization Agent in Iron Oxide Nanoparticles∥ J. Am. Chem. Soc. 2007, 129, 2482-2487.
24. Xie, Jin.; Xu, C.; Xu, Z.; Hou, Y.; Young, K. L.; Wang, S. X.; Pourmand, N.; Sun, S. ─Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-Triazine∥ Chem. Mater. 2006, 18, 5401-5403.
25. Amstad, E.; Gillich, T.; Bilecka, I.; Textor, M.; Reimhult E. ─Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups∥ Nano Lett. 2009, 9, 4042-4048.
26. Liem, K. P.; Mart, R. J.; Webb, S. J. ─Magnetic Assembly and Patterning of Vesicle/Nanoparticle Aggregates∥ J. Am. Chem. Soc. 2007, 129, 12080-12081.
27. Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.; Xu, B. ─Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles∥ J. Am. Chem. Soc. 2004, 126, 9938-9939.
28. Gu, H.; Yang, Z.; Gao, J.; Chang, C. K.; Xu, B. ─Heterodimers of Nanoparticles: Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules∥ J. Am. Chem. Soc. 2005, 127, 34-35.
29. Wei, H.; Wang, E. ─Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection∥ Anal. Chem. 2008, 80, 2250-2254.
30. Yu, C.-J.; Lin, C.-Y.; Liu, C.-H.; Cheng, T.-L.; Tseng, W.-L. ─Synthesis of Poly(diallyldimethylammonium chloride)-Coated Fe3O4 Nanoparticles for Colorimetric Sensing of Glucose and Selective Extraction of Thiol∥ Biosens. Bioelectron. 2010, 26, 913-917.
31. Tsenga, W.-L.; Chen, S.-M.; Hsub, C.-Y.; Hsieh, M.-M. ∥ On-Line Concentration and Separation of Indolamines, Catecholamines, and Metanephrines in Capillary Electrophoresis using High Concentration of Poly(diallyldimethylammonium
chloride)∥ Anal. Chim. Acta 2008, 613, 108-115.
32. Angeletti, C.; Khomitch, V.; Halaban, R.; Rimm, D. L. ─Novel Tyramide-Based Tyrosinase Assay for the Detection of Melanoma Cells in Cytological Preparations∥ Diagn. Cytopathol. 2004, 31, 33-37.
33. Yildiz, H. B.; Freeman, R.; Gill, R.; Willner, I. ─Electrochemical, Photoelectrochemical, and Piezoelectric Analysis of Tyrosinase Activity by Functionalized Nanoparticles∥ Anal. Chem. 2008, 80, 2811-2816.
34. Li, D; Gill, R.; Freeman R.; Willner I. ─Probing of Enzyme Reactions by the Biocatalyst-Induced Association or Dissociation of Redox Labels Linked to Monolayer-Functionalized Electrodes∥ Chem. Commun. 2006, 5027–5029
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.137.64
論文開放下載的時間是 校外不公開

Your IP address is 18.117.137.64
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code