Responsive image
博碩士論文 etd-0704112-084818 詳細資訊
Title page for etd-0704112-084818
論文名稱
Title
氮摻雜鈦酸管的合成、鑑定、與其可見光觸媒應用
Synthesis and Characterization of Nitrogen-Doped Titanate Nanotube for Photocatalytic Applications in Visible-light Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-21
繳交日期
Date of Submission
2012-07-04
關鍵字
Keywords
脫乙基反應、二氧化鈦奈米管、氮摻雜、可見光光觸媒
deethylation, visible light photocatalysis, nanotubes, Nitrogen-doped TiO2
統計
Statistics
本論文已被瀏覽 5747 次,被下載 1020
The thesis/dissertation has been browsed 5747 times, has been downloaded 1020 times.
中文摘要
本研究是以尿素為氮來源,利用商用二氧化鈦P25以共水熱(co-hydrothermal)的方式,合成氮摻雜鈦酸管。研究中改變尿素的添加量,並以掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM),觀察所合成鈦酸管表面形貌的微觀變化,以X射線電子能譜儀(XPS),觀察氮摻雜後鈦酸管的化學鍵結,以氮氣吸脫附進行BET比表面積與孔洞結構的量測,綜合分析結果顯示,共水熱方式可成功合成具氮摻雜的二氧化鈦奈米管,而隨著尿素添加量的增加,鈦酸管的表面形貌會產生由管狀轉為顆粒狀的變化,氮在鈦酸管中N1s 的鍵結能為400eV,是以γ-N2型分子型吸附,鍵結方式為Ti-O-N 或Ti-N-O,屬於間隙型化學吸附方式與鈦酸管結合。氮摻雜的鈦酸管以Rhodamine B(RB)染料進行可見光催化降解反應,各不同尿素添加量所合成鈦酸管之降解速率均優於商用二氧化鈦P25。反應機構推論為脫乙基反應(deethylation) 與氮摻雜鈦酸管後降低二氧化鈦能階所產生的礦化反應(mineralization) 兩種反應機構的加成效果。
Abstract
Nitrogen-doped TiO2 nanotubes with enhanced visible light photocatalytic activity have been synthesized using commercial titania P25 as raw material by a facile P25/urea co-hydrothermal method. Morphological and microstructual characteristics were conducted by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption/desorption isotherms; chemical identifications were performed using X-ray photoelectron spectroscopy, and the interstitial nitrogen linkage to the TiO2 nanotubes is identified. The photocatalytic activity of all nitrogen-doped TiO2 nanotubes synthesized by different urea content, evaluated by the decomposition of rhodamine B dye solution under visible light using UV–Vis absorption spectroscopy, is found to exhibit higher degradation rate than that of P25. Factors affecting the photocatalytic activity of RB were analyzed and a possible mechanism of photodegradation was also proposed. The high photocatalytic activity was attributed to the process of two different mechanisms, one was the direct degradation of the chromophoric system and the other was successive deethylation of the four ethyl groups.
目次 Table of Contents
論文審定書 I
誌謝 II
摘要 III
Abstract IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 光觸媒簡介 3
2.1.1 半導體性質 3
2.1.2 光催化反應 4
2.1.3 二氧化鈦光催化反應 6
2.2 二氧化鈦簡介 7
2.2.1 二氧化鈦結晶型態及結構 7
2.2.2 二氧化鈦物性簡介 8
2.3 二氧化鈦奈米管製備方式 9
2.3.2 模版法 10
2.4 奈米管孔洞結構分析 11
2.4.1 孔洞結構分類 11
2.4.2 吸脫附曲線 11
2.5 二氧化鈦光觸媒的改質方式 14
2.5.1 過渡金屬的摻雜 14
2.5.2 非金屬的摻雜 14
2.5.3 氮摻雜的方法 14
2.5.4 電子能譜儀對氮摻雜二氧化鈦的鑑定理論 17
第三章 研究方法 20
3.1 實驗藥品 20
3.2 實驗流程 20
3.3 樣品代號 21
3.4 儀器分析原理與方法 22
第四章 結果與討論 25
4.1. 酸洗時間效應 25
4.1.1. XRD分析 25
4.2. 鹽酸酸洗濃度效應 27
4.2.1. Z系列鈦酸管XRD分析 27
4.2.2. 不同鹽酸濃度後處理鈉含量比較 30
4.2.3. 比表面積與孔洞結構分析 30
4.2.4. Z系列鈦酸管PL分析 33
4.2.5. Z系列鈦酸管之SEM分析 34
4.2.6. Z系列鈦酸管之TEM 分析 36
4.2.7. Z系列之可見光光催化反應 38
4.3. 以共水熱合成氮摻雜鈦酸管之特性分析 39
4.3.1. 電子能譜儀特性分析 39
4.3.2. X光射線繞射分析 43
4.3.3. SEM和TEM電子顯微鏡分析 44
4.3.4. BET比表面積與孔洞分佈分析 45
4.3.5. UV/Vis光譜分析 47
4.3.6. 可見光降解分析 51
第五章 結論 53
第六章 未來工作的建議 54
參考資料 55

 
參考文獻 References
[1] X Hu, T Mohamood, W Ma, C Chen, J. Phys. Chem. B, J Zhao (2006), 26012.
[2] AR Gandhe, JB Fernandes (2005), J. Solid State Chem., 178: 2953.
[3] A Michailowski, D AlMawlawi, G Cheng, M Moskovits (2001), Chem. Phys. Lett.
,349: 1.
[4] M Anpo (2000), Pure Appl. Chem., 72: 1787.
[5] H Yamashita, M Honda, M Harada, et al. (1998), J. Phys. Chem. B, 102: 10707.
[6] M Mrowetz, W Balcerski, A Colussi, MR Hoffmann (2004), J. Phys. Chem. B, 17269.
[7] R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga (2001), science 293: 269.
[8] S Sato (1986), Chem. Phys. Lett., 123: 126.
[9] R Nakamura, T Tanaka, Y Nakato (2004), J. Phys. Chem. B, 108: 10617.
[10] PV Kamat (1993), Chem. Rev., 93: 267.
[11] SL Kuo, CJ Liao (2006), Water quality research journal of Canada 41: 365.
[12] M Boudart, G Djega-Mariadassou (1984), Princeton University Press Princeton, NJ
[13] H Chen, A Nambu, W Wen (2007), J. Phys. Chem. C, 111: 1366.
[14] D Bahnemann (1994), Nachr. Chem. Tech. Lab., 42: 378.
[15] W Barthlott, C Neinhuis (1997), Planta Med., 202: 1.
[16] JM Herrmann (1999), Catal. Today, 53: 115.
[17] A Mills, SL Hunte (1997), J. Photochem. Photobiol. Chem. Sect., 108: 1.
[18] O Legrini, E Oliveros, A Braun (1993), Chem. Rev. 93: 671.
[19] K Rajeshwar, M Osugi, W Chanmanee (2008), J. Photochem. Photobiol. C: Photochem. Rev. 9: 171.
[20] JM Wu, TW Zhang (2004), J. Photochem. Photobiol. A: Chem. 162: 171.
[21] S Yin, K Ihara, M Komatsu (2006), Solid State Commun., 137: 132.
[22] Q Chen, G Du, S Zhang, LM Peng (2002), Acta Crystallogr., Sect. B:
Struct. Sci ,58: 587.
[23] Q Chen, W Zhou, GH Du, LM Peng (2002), Adv. Mater. ,14: 1208.
[24] T Kasuga, M Hiramatsu, A Hoson, T Sekino, K Niihara (1998), Langmuir 14: 3160.
[25] T Kasuga, M Hiramatsu, A Hoson, T Sekino, K Niihara (1999), Adv. Mater.,11: 1307.
[26] DS Seo, JK Lee, H Kim (2001), J. Cryst. Growth ,229: 428.
[27] P Hoyer (1996), Langmuir 12: 1411.
[28] H Imai, Y Takei, K Shimizu, M Matsuda, H Hirashima (1999), J. Mater. Chem. 9: 2971.
[29] J Yang, Z Jin, X Wang (2003), Dalton Trans.: 3898.
[30] Q Chen, GH Du, S Zhang, LM Peng (2002), Acta Crystallogr., Sect. B:Struct. Sci 58: 587
[31] GH Du, Q Chen, RC Che, ZY Yuan, LM Peng (2001), Appl. Phys. Lett. ,79: 3702.
[32] CR Second, G Ertl, H Knözinger, F Schüth, J Weitkamp, WVCHVGHC KGaA (2008), Environ. Eng. Manage. J. 7: 641.
[33] K Sing, D Everett, R Haul (1985), Pure Appl. Chem 57: 603.
[34] X Li, F Li (2001), Environ. Sci. Technol. ,35: 2381.
[35] A Fuerte, M Hernandez-Alonso, A Maira, et al. (2001), Chem. Commun. ,: 2718.
[36] W Choi, A Termin, MR Hoffmann (1994), J. Phys. Chem. ,98: 13669.
[37] SUM Khan, M Al-Shahry, WB Ingler Jr (2002), science 297: 2243.
[38] CY Jimmy, J Yu, W Ho, Z Jiang, L Zhang (2002), Chem. Mater. ,14: 3808.
[39] Di Li, H Haneda, S Hishita, N Ohashi (2005), Chem. Mater. ,17: 2596.
[40] L Lin, R Zheng, J Xie, Y Zhu, Y Xie (2007), Appl. Catal., B: Environmental 76: 196.
[41] H Irie, Y Watanabe, K Hashimoto (2003), J. Phys. Chem., 107: 5483.
[42] M Miyauchi, A Ikezawa, H Tobimatsu, H Irie, K Hashimoto (2004), Phys. Chem. Chem. Phys. 6: 865.
[43] C Burda, Y Lou, X Chen, ACS Samia, J Stout, JL Gole (2003), Nano letters 3: 1049.
[44] T Ihara, M Miyoshi, Y Iriyama, O Matsumoto, S Sugihara (2003), Appl. Catal., B : Environ. 42: 403.
[45] H Irie, S Washizuka, Y Watanabe, T Kako, K Hashimoto (2005), J. Electrochem. Soc., 152: E351.
[46] H Nishikiori, Y Fukasawa, Y Yokosuka, T Fujii (2011), Res. Chem. Intermed. ,37: 869.
[47] F Peng, L Cai, H Yu, H Wang, J Yang (2008), J. Solid State Chem. ,181: 130.
[48] M Sathish, B Viswanathan, R Viswanath, CS Gopinath (2005), Chem. Mater. 17: 6349.
[49] NC Saha, HG Tompkins (1992), J. Appl. Phys. 72: 3072.
[50] M Kitano, K Funatsu, M Matsuoka, M Ueshima, M Anpo (2006), J. Phys. Chem. B 110: 25266.
[51] Z Wang, W Cai, X Hong, X Zhao, F Xu, C Cai (2005), Appl. Catal., B : Environ. 57: 223.
[52] JL Gole, JD Stout, C Burda, YB Lou, XB Chen (2004), Phys. Chem. B, 108: 1230.
[53] YQ Wang, HM Cheng, YZ Hao, JM Ma, WH Li, SM Cai (1999), Thin Solid Films 349
[54] HX Li, JX Li, YI Huo (2006), J. Phys. Chem. ,110: 1559.
[55] DV Bavykin, VN Parmon, AA Lapkin, FC Walsh (2004), J. Mater. Chem. 14: 3370.
[56] L Qian, ZS Jin, SY Yang, ZL Du, XR Xu (2005), Chem. Mater., 17: 5334.
[57] YF Tu, SY Huang, JP Sang, XW Zou (2009), J. Alloys Compd., 482: 382.
[58] R Yoshida, Y Suzuki, S Yoshikawa (2005), Mater. Chem. Phys. 91: 409.
[59] O Merka, V Yarovyi, DW Bahnemann, M Wark (2011), J. Phys. Chem. C.
[60] U Diebold (2003), Surf. Sci. Rep.53229


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code