Responsive image
博碩士論文 etd-0704112-114424 詳細資訊
Title page for etd-0704112-114424
論文名稱
Title
微米碳酸鈣之早期燒結與水中脈衝雷射碎化
Early stage sintering and PLAL fragmentation of micro-scale CaCO3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-12
繳交日期
Date of Submission
2012-07-04
關鍵字
Keywords
光性、結構、水中雷射剝蝕、比表面積、初期燒結、碳酸鈣粉末
early-stage sintering, structure and optical property modifications, pulsed laser ablation in water, specific surface area, CaCO3 powder
統計
Statistics
本論文已被瀏覽 5692 次,被下載 374
The thesis/dissertation has been browsed 5692 times, has been downloaded 374 times.
中文摘要
在第一部分中,球磨次微米與奈米方解石碳酸鈣粉末在450℃~600℃進行等溫燒結,藉由BET / BJH吸脫附遲滯曲線得知等溫吸脫附曲線為第Ⅳ型,遲滯現象為H1型態,是具有規則性圓柱型孔洞的中孔洞材料所出現的型態,隨燒結時間與溫度的增加,比表面積下降;並以掃瞄式電子顯微鏡之觀察,可得知次微米與奈米方解石碳酸鈣粉末早期粗化與聚合形成管狀孔洞,以及隨後形成孤獨孔洞之現象;利用比表面積收縮百分比和時間的關係曲線,找出各溫度收縮面積50%的對應時間,代入阿瑞尼氏(Arrhenius)方程式,求出球磨微奈米至次微米碳酸鈣粉末之早期燒結粗化與聚合的活化能為57.5±1.0 kJ/mol,比表面積變化速率為零之關鍵溫度Tcr為590K (317℃),在上述燒結溫度與時間內造成次微米與奈米碳酸鈣粉末表面積降低的機制,應該包括方解石顆粒之布朗運動、聚簇、粗化,以及鈣離子與碳酸根離子在晶粒表面的同步擴散。
在第二部份中,將微米方解石碳酸鈣水溶液透過脈衝雷射(Q-switch模式,532nm,400mJ)在特定液面高度(與濃度成反比)與聚焦高度參數進行剝蝕碎化,觀察碳酸鈣之變化,由X光繞射觀察到原始的第I型方解石轉變成第II型方解石,是為碳酸根離子的轉動與鈣離子的位移所造成位移性的相變化,而且濃度愈高,晶格緻密化的程度愈大,內應力可達1.5 GPa;在穿透式電子顯微鏡下可觀察到次微米的第II型方解石以外,還有許多奈米等級的其他高壓相附著於大顆粒的表面,如霰石(aragonite)與第III型方解石,甚至是分解產物石灰(氧化鈣CaO)及水合物質如六水碳鈣石(ikaite)、以及與第II型方解石具有的一水方解石(monohydrocalcite,簡稱mh),甚至產生具有C-C或C-H的振動模式之非結晶物質,以上這些相變化使最小能隙值由第I型方解石原有的6 eV降至由氫化第II型方解石貢獻的5 eV與由其他氫化附屬相貢獻的3 eV。
Abstract
In the first part of this thesis, CaCO3 (calcite) powder ball-milled to micro/nano scale were subjected to isothermal firing in the temperature range of 450-600 °C in an open air furnace in order to study specific-surface area reduction as a result of early-stage sintering/coarsening/coalescence/repacking (denoted as SCCR process) of the fine particles. The surface area and pore size distributions were obtained from the BET and BJH methods, respectively. The H1 type adsorption/desorption hysteresis loop of the type IV isotherm was used as an indicator of cylindrical pore formation upon dry pressing and firing of the powder. The apparent activation energy for the onset SCCR of the dry-pressed calcite powder turned out to be 57.5±1.0 kJ/mol based on t0.5, i.e. time for 50 % specific surface area reduction. The minimum temperature for such an incipient SCCR process was estimated to be 590K (317℃) by extrapolating the specific-surface-area reduction rate to null. The mechanism of specific surface area change includes the Brownian motion, coarsening and coalescence/repacking of calcite particles besides sintering via synchronizing diffusion of calcium ion and carbonic acid ion along grain surface and boundary. In the second part of this thesis, pulsed laser ablation on micrometer-sized calcite (type I) powder in liquid H2O (PLAL) was conducted to study the structure and optical property change of calcium carbonate under a dynamic high-temperature.
high-pressure aqueous condition. X-ray diffraction (XRD) indicated the fragmented calcite I powder via such a PLAL process change predominantly into a metastable CaCO3 II phase presumably by a displacive type transformation from calcite I and/or nucleated from atom clusters. The refined XRD lattice parameters indicate a significant internal compressive stress (up to 1.5 GPa) was retained for the predominant CaCO3 II nanoparticles having well-developed (013), (010) and (013) faces as revealed by transmission electron microscopy (TEM). Minor calcium carbonate nanoparticles were also identified by TEM to be other high-pressure polymorphs (type III and aragonite), hydrated (monohydrocalcite, ikaite), amorphized (amorphous calcium carbonate), and even decomposed as cubic lime (CaO). Monohydrocalcite occasionally occurred as epitaxial intergrowths within the predominant CaCO3 II matrix. Vibrational spectroscopy (Raman and FTIR) indicated
the structure units of the overall nanoparticles by the PLAL process were considerably modified as a combined results of size miniature, protonation and internal compressive stress. The UV-visible absorption results further indicate that the minimum band gap of the colloidal solution was narrowed down to ca. 5 eV and 3 eV for the predominant CaCO3 II and minor accessory phases, respectively, thus shedding light on their potential opto-catalytic applications.
目次 Table of Contents
目錄
論文審定書..................................................................................................................... i
誌謝 …………………………………………………………………………………..ii
摘要 ………………………………………………………………………………….iii
Abstract ......................................................................................................................... iv
目錄 …………………………………………………………………………………vii
表目錄........................................................................................................................... ix
圖目錄............................................................................................................................ x
附錄目錄.................................................................................................................... xiii
第一部分........................................................................................................................ 1
壹、 前言 ...................................................................................................................... 1
貳、 實驗流程 .............................................................................................................. 5
參、 實驗步驟及方法 .................................................................................................. 6
一、 球磨: ........................................................................................................... 6
二、 壓錠: ........................................................................................................... 6
三、 熱處理: ....................................................................................................... 6
四、 BET 測量: ................................................................................................. 6
五、 X-ray 繞射: ................................................................................................ 6
六、 掃瞄式電子顯微鏡: ................................................................................... 6
肆、 實驗結果 .............................................................................................................. 7
一、 BET比表面積: .......................................................................................... 7
二、 BJH 氮氣吸脫附曲線: .............................................................................. 7
三、 X 光繞射分析: .......................................................................................... 8
四、 穿透式及掃瞄式電子顯微鏡: ................................................................... 8
伍、討論........................................................................................................................ 9
一、吸脫附遲滯曲線與方解石燒結體結構變化的關係.................................... 9
二、方解石粉末早期燒結的機制........................................................................ 9
三、方解石粉末早期燒結粗化與聚合之活化能與燒結溫度下限.................. 10
陸、結論...................................................................................................................... 12
柒、參考資料.............................................................................................................. 13
第二部份...................................................................................................................... 29
壹、 前言 .................................................................................................................... 29
貳、 實驗流程 ............................................................................................................ 32
參、 實驗步驟及方法 ................................................................................................ 33
一、 溶液製備: ................................................................................................. 33
二、 脈衝雷射剝蝕: ......................................................................................... 33
三、 X-ray繞射: ............................................................................................... 33
四、 拉曼光譜: ................................................................................................. 33
五、 霍式轉換紅外光光譜: ............................................................................. 33
六、 UV-Vis吸收光譜: .................................................................................... 33
七、偏光顯微鏡:.............................................................................................. 34
八、掃瞄式電子顯微鏡:.................................................................................. 34
九、解析型穿透式電子顯微鏡:...................................................................... 34
肆、實驗結果.............................................................................................................. 35
一、X-光繞射分析 ............................................................................................. 35
二、拉曼光譜分析.............................................................................................. 35
三、霍式轉換紅外光譜儀分析.......................................................................... 36
四、UV-Vis吸收光譜分析 ................................................................................ 37
五、偏光顯微影像分析與掃瞄式電子顯微分析.............................................. 37
六、穿透式電子顯微影像分析.......................................................................... 38
伍、討論...................................................................................................................... 40
一、雷射剝蝕碳酸鈣之同質異形相變化.......................................................... 40
二、雷射剝蝕造成碳酸鈣之失序分解氫化與水合物的熱力學因素.............. 41
三、雷射剝蝕碎化造成碳酸鈣粉末光譜與能隙改變的原因.......................... 42
四、自然水成石灰岩動態撞擊產狀之聯想與潛在工業用途.......................... 43
陸、結論...................................................................................................................... 45
柒、參考文獻.............................................................................................................. 46
參考文獻 References
第一部分參考文獻
Brunauer, S., Emmett, P.H., Teller, E., “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., 60 (1938) 309-319.
Chen, P.L., Chen, I.W., “Sintering of fine oxide powders,” J. Am. Ceram. Soc., 80[3] (1997) 637-645.
Chen, T.J., Lu, J.H., Liu, I.L., Shen, P., “Onset coarsening-coalescence kinetics of ZrO2 and less refractory TiO2 nanoparticles: Effect of homologous temperature and phase transformation,” J. Euro. Ceram. Soc., 32 (2012) 795-805.
Chen, X., Luo, W., Liao, Z., “Microstructure and thermal decomposition kinetics of nanocrystalline calcite,” Nanoscience, 11 (2006) 311-315.
Davis, B.L., Adams, L.H., “Kinetics of the calcite - aragonite transformation,” J. Geophys. Res., 70 (1965) 433-441.
Ertl, G., Knözinger, H., Weitkamp, J., “Handbook of Heterogeneous Catalysis”, vol 3, VCH D-69451 Weinheim, (1997) 1508.
Gala, I., Glasser, F.P., Andrade, C., “Calcium carbonate decomposition,” J. Therm. Anal. Calorim., Published online March 2012 (DOI10.1007/s10973-012-2290-x)
Kingery, W.D., Bowen, H.K., Uhlmann, D.R., “Introduction to Ceramics,” 1976.
Langmuir, I., “The constitution and fundamental properties of solids and liquids,” J. Am. Chem. Soc., 38 (1916) 2221-2295.
Liu, I.L., Shen, P., “Onset coarsening/coalescence kinetics of γ-type related Al2O3 nanoparticles: implications to their assembly in a laser ablation process,” J. Eur. Ceram. Soc., 29 (2009) 2235-2248.
Liu, I.H., Shen, P., “Coarsening, coalescence and sintering of hexagonal ZnO elongated nanoparticles,” Ceram. International, 36 (2010) 1289-1296.
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., “Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity,” Pure Appl. Chem., 57 (1985) 603-619.
Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura, O., Kikegawa, T., “ Phase relations of CaCO3 at high pressure and high temperature,” Am. Mineral., 86 (2001) 997–1002.
Yeh, Y., Liu, I.H., Shen, P., “Onset coarsening/coalescence of cobalt oxides in the form of nanoplates vs. equi-axed micron particles,” J. Eur. Ceram. Soc., 30 (2010) 677-688.

第二部份參考文獻
Agrinier, P., Deutsch, A., Schärer, U., Martinez, I., Javoy, M., “On the kinetics of the reaction CO2 with hot CaO during impact events: an experimental study,” Lunar Planetary Institute, Houston (CD-ROM). Lunar Planet. Sci. XXIX, 1217 (abstract). (1998).
Agrinier, P., Deutsch, A., Schärer, U., Martinez, I., “Fast back-reactions of shock-released CO2 from carbonates: experimental approach,” Geochim. Cosmochim. Acta, 65 (2001) 2615–2632.
Baer, D.R., Blanchard, D. L., ”Studies of the calcite cleavage surface for comparison with calculation,” Applied Surface Science, 72 (1993) 295-300.
Buzgar, N., Apopei, A., “The Raman study of certain carbonates,” Anal. Şt. Univ. “Al. I. Cuza” Iaşi, Geologie, LV/2 (2009) 98-112.
Canti, M.G., “An Investigation of microscopic calcareous spherulites from Herbivore Dungs,” Journal of Archaeological Science, 24(1997) 219-231.
Catalli, K.,Williams, Q., “A high-pressure phase transition of calcite-III,” American Mineralogist, 90 (2005) 1679-1682.
Chen, X., Luo, W., Liao, Z., “Microstrusture and thermal decomposition kinetics of nanocrystalline calcite,” Nanoscience, 11 (2006) 311-315.
Fong, M.Y., Nicol, M., “Raman spectrum of calcium carbonate at high pressure,” The Journal of Chemical Physics, 54 (1971) 579-585.
Gunasekaran, S., Anbalagan, G., Pandi, S., “Raman and infrared spectra of carbonates of calcite structure,” J. Raman Spectrosc., 37 (2006) 892–899.
Holland, T.J.B., Redfern, S.A.T., “UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics,” J. Appl. Cryst., 30 (1997) 84.
Holland, T.J.B., Redfern, S.A.T., “Unit cell refinement from powder diffraction data: the use of regression diagnostics,” Mineralogical Magazine, 61 (1997) 65-77.
Ivanov, B. A., Deutsch, A., “The phase diagram of CaCO3 in relation to shock compression and decomposition,” Physics of the Earth and Planetary Interiors, 129(2002) 131–143.
Kieffer, S. W., and Simonds, C. H., ” The role of volatiles and lithology in the impact cratering process,” Rev. Geophys. Space Phys,18(1980) 143–181.
Krauss, F., Schriever, W., “Die hydrate des calcium carbonate,” Z. Anorg. Allgem. Chem., 188 (1930) 259-273.
Li, H., Na, B.S., Khor, K. A., Cheang, P., Clyne, T. W., “Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination,” Acta Materialia, 52 (2004) 445–453.
Liu, I. L., Shen, P., Chen, S. Y., “H+- and Al2+-codoped Al2O3 nanoparticles with spinel-type related structures by pulsed laser ablation in water,” J. Phys. Chem. C., 114(2010) 7751–7757.
Lu, H.D., Lin, B.C., Chen, S.Y., Shen, P., ”Pulsed laser ablation induced fragmentation, transformation, internal stress, Sn2+/H+ cosignature, and optical property changeof SnO2 powders in water,” J. Phys. Chem. C., 115(2011) 24577–24585.
Marland, G., “The stability of CaCO3•6H2O (ikaite),” Geochim. Cosmochim, Acta, 39 (1975) 83-91.
Matos, M.C., Ilharco, L.M., Almeida, R.M., (1992) “The evolution of TEOS to silica gel and glass by vibrational spectroscopy,” J. Non-Cryst. Solids, 147&148, 232-237.
Medeiros, S. K., Albuquerque, E. L., Maia Jr, F. F., Caetano, E. W. S., Freire, V. N., “Electronic and optical properties of CaCO3 calcite, and excitons in Si@CaCO3 and CaCO3@SiO2 core-shell quantum dots,” J. Phys. D: Appl. Phys., 40 (2007) 5747–5752.
Merrill, L. and Bassett, W.A., ” The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate,” Acta Cryst., B31 (1975) 343-349.
Mirwald, P.W., “A differential thermal analysis study of the high-temperature polymorphism of calcite at high pressure,” Contributions to Mineralogy and Petrology, 59 (1976) 33–40.
Nave, D., Rosenwaks, S., Vago, R., Bar, I., “Pulsed laser deposition of marine origin material: Preparation and characterization of CaCO3 particles and CaO nanocrystals,” J. Appl. Phys., 95 (2004) 8309-8313.
Pauly, H., ” A new mineral from Greenland,” Arctic, 16 (1963) 263-264.
Pavese, A., Catti, M., Ferraris, G., Hull, S., “P-V equation of state of portlandite, Ca(OH)2 , from powder neutron diffraction data,” Phys Chem Minerals, 24 (1997) 85–89.
Rao, T. R., “Kinetics of calcium carbonate decomposition,” Chemical Engineering & Technology, 19 (1996) 373-377.
Shahar, A., Bassett, W. A., Mao, H. K., Chou, I. M., Mao, W. “The stability and Raman spectra of ikaite, CaCO3•6H2O, at high pressure and temperature,” Am. Mineral., 90 (2005) 1835-1839.
Suito, K., Namba, J., Horikawa, T. Taniguchi, Y., Sakurai, N., Kobayashi, M., Onodera, A., Shimomura, O., Kikegawa, T., “ Phase relations of CaCO3 at high pressure and high temperature,” Am. Mineral., 86 (2001) 997–1002.
Tlili, M. M., Ben Amor, M., Gabrielli, C., Joiret, S., Maurin G., Rousseau P., “Characterization of CaCO3 hydrates by micro-Raman spectroscopy,” J. Raman Spectrosc., 33 (2001) 10-16.
Wu, C.H., Chen, S.Y., Shen, P., “Turbostratic shell encapsulated ZrO2 nanoparticles and high-pressure ZrSiO4 phase by PLA on Zr in TEOS,” EOS Conference, 2nd EOS Conference on Laser Ablation and Nanoparticle Generation in Liquids, May 22-25, Taormina (Sicily), Italy., (2012).
Xiao, J., Wang Z., Tang Y., Yang S., “Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite,” Langmuir, 26 ( 2010) 4977–4983.
Yang, G.W., “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Progress in Materials Science, 52 (2007) 648-698.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code