Responsive image
博碩士論文 etd-0704113-141931 詳細資訊
Title page for etd-0704113-141931
論文名稱
Title
一、 泥漿進樣結合流動注入化學蒸氣生成感應耦合電漿質譜儀於粉末食品中鎘、銻及汞之分析 二、 液相層析結合化學蒸氣生成感應耦合電漿質譜儀於水樣中砷物種之分析
1.Direct determination of cadmium, antimony and mercury in powder food by SS-FIA-CVG-ICP-MS with slurry sample 2.Determination of arsenic species in water sample by HPLC-CVG-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-08-04
關鍵字
Keywords
食品、液相層析、感應耦合電漿質譜儀、化學蒸氣生成法、動態反應槽
CVG, ICP-MS, HPLC, DRC
統計
Statistics
本論文已被瀏覽 5687 次,被下載 634
The thesis/dissertation has been browsed 5687 times, has been downloaded 634 times.
中文摘要
化學蒸氣生成法最早在1973年由 Braman 等人所發展出的樣品輸入技術,其利用分析物於酸性環境下與還原試劑反應形成氫化物,而氫化物之熔點與沸點相較於分析物下降許多,因此產物會以氣態的形式混在混合液中,再藉由氣液分離裝置將氫化物從液體分離並送入偵測器中。由於氫化物為氣態,相對於傳統氣動式霧化器可以得到較高之樣品傳送效率 (Sample transport efficiency) ,增加訊號之強度,另外使用額外的氣液分離裝置 (Gas-liquid separator,GLS) 有將基質分離之優點,能降低光譜及非光譜性干擾。
第一部分研究利用泥漿進樣法對食品粉末中的鎘、銻及汞做萃取,並以流動注入化學蒸氣生成系統結合感應耦合電漿質譜儀 (FIA-CVG-ICP-MS) 做偵測。實驗中為求得最大訊號,依序對CVG系統中增益試劑thiourea濃度、Co(II)濃度、HCl濃度、還原試劑NaBH4濃度、反應試劑流速、混合線圈體積做最適化探討。另外在CVG系統中使用氣液分離裝置幫助分析物從基質分離,避免鎘及銻之光譜干擾。實驗中比較水溶液校正法 (External calibration) 及標準添加法 (Standard addition) 之斜率,證明基質會壓抑分析物之化學蒸氣生成,因此選擇標準添加法進行定量,並搭配同位素稀釋法 (Isotope dilution) 來驗證結果,本方法之鎘、銻及汞方法偵測極限分別為0.1、0.15、0.1 μg kg-1。為了避免不同物種造成化學蒸氣生成效益之差異,導致定量上的偏差,因此比較Sb(III)及Sb(V)和無機汞及甲基汞在經過泥漿製備法後化學蒸氣生成效率之差異,證實泥漿樣品製備法的還原效果。最後再分析米粉標準樣品NIST 1568a、玉米粉、中筋麵粉、米粉、奶粉及巧克力麥芽粉來驗證本方法之準確性及可行性。
第二部分研究利用HPLC分離水樣中的砷物種,並將分離出的砷物種經由CVG系統產生砷的氫化物,最後經由氣動式霧化器將分析物送入ICP-MS做偵測。以氣動式霧化器做為氣液分離裝置具有系統簡單、不需額外裝置且多一道霧化手續有助於氫化物從分析物溶液釋出等優點。實驗中為求得最大訊號,依序對CVG系統中增益試劑L-cysteine濃度、HCl濃度、還原試劑NaBH4濃度、反應試劑流速、混合線圈長度做最適化探討。由於使用氣動式霧化器做為氣液分離裝置,所使用的HCl試劑會對75As產生40Ar35Cl的光譜干擾,因此額外再加開動態反應槽模式 (Dynamic reaction cell,DRC),並分別探討氧氣及氫氣作為碰撞氣體之效果,以避免40Ar35Cl對75As的干擾,最後選擇氫氣作為本研究之反應氣體。本實驗使用離子層析 (Ion exchange chromatography) 分離As(III)、DMA、MMA、As(V),沖提方法採用梯度沖提,實驗中為求得適當之分析時間及訊號,將HPLC與CVG系統串連後依序對pH值、鹽類濃度及LC流速作探討。最後以HPLC-CVG-DRC-ICP-MA系統對標準河水參考樣品SLRS-4、標準和海口水參考樣品SLEW-3、台南地區地下水、美術館池水及澄清湖湖水做偵測並驗證本方法之可行性。
Abstract
Chemical vapor generation (CVG), initially developed by Braman and Foreback in 1973. The analysis react with reduction in acid and produce hydride compounds. Hydride compounds have much Sample transport efficiency than nebulizer, so it is so sensitive that the method can lower limit detection. Using CVG system can separate analysis from matrix by gas-liquid separator and avoid spectra interfere.
First study using slurry sampling as pretreatment, and determination cadmium, antimony and mercury by SS-FIA-CVG-ICP-MS. To get best signal, testing concentration of thiourea, cobalt, HCl and NaBH4. In addition, testing reagent flow rate and volume of mixing coil, too.Then, we compare slope of external calibration and standard addition to ensure effect by matrix on chemical vapor generation. We choose standard addition and isotope dilution as quantitative method. The experimental method detection limits for cadmium, antimony and mercury are in the range of 0.1-0.15 μg kg-1 . To avoid various species of antimony and mercury affect accuracy of quantitative, we compare chemical vapor generation of Sb(III) and Sb(V) as well as Hg(II) and CH3Hg(II). The accuracy of the method is evaluated by analyzing a rice flour certified reference material (NIST 1568a).
Second study is a method employing a vapor generation system and LC combines with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of arsenic species in water sample. To get best signal, testing concentration of thiourea, HCl and NaBH4. In addition, testing reagent flow rate and volume of mixing coil, too. To avoid 40Ar35Cl interferes with 75As, we choose H2 as reaction gas in DRC system to transfer charge from polyatomic ions 40Ar35Cl+ and get accurate quantitative. We use ion exchange chromatography to separate As(III), DMA, MMA, As(V).The effency of the mobile phase, ammonium carbonate, is evaluated for LC separation of As(III), DMA, MMA, As(V). The sensitivity, detection limits of LC-ICP-MS with a vapor generation is better than LC-ICP-MS with pneumatic nebulization. To get best signal by LC-CVG-ICP-MS, testing pH, concentration of salt and flow rate of LC. The accuracy of the method is evaluated by analyzing riverine water certified reference material (SLRS-4) and estuarine water certified reference material (SLEW-3).
目次 Table of Contents
目錄
論文摘要 i
目錄 v
圖表目錄 viii

第一章 流動注入化學蒸氣生成結合感應耦合電漿質譜儀於粉末食品中微量鎘、銻及汞分析之運用
壹、前言 1
一、研究背景 1
二、流動注入分析法 4
三、化學蒸氣生成法 7
四、同位素稀釋法 8
貳、實驗部分
一、儀器裝置 9
二、試劑藥品及溶液配製 10
參、實驗過程
一、化學蒸氣生成系統最佳化條件探討 16
二、ICP-MS系統操作條件之探討 18
三、分析訊號之再現性 19
四、樣品稀釋倍數探討 19
五、光譜干擾探討 19
六、校正曲線及偵測極限估計 20
七、食品粉末樣品前處理及分析 20
肆、結果與討論
一、化學蒸氣生成系統最佳化條件探討 21
二、ICP-MS系統操作條件之探討 33
三、分析訊號之再現性 33
四、樣品稀釋倍數探討 38
五、光譜干擾探討 38
六、校正曲線及偵測極限估計 41
七、食品粉末樣品前處理及分析 44
伍、結論 53
陸、參考文獻 54

第二章 液相層析結合化學蒸氣生成感應耦合電漿質譜儀於水樣中砷物種之分析
壹、前言 59
一、研究背景 59
二、動態反應槽系統 61
貳、實驗部分
一、儀器裝置 62
二、試劑藥品與溶液配製 63
參、實驗過程
一、化學蒸氣生成系統條件最適化之探討 66
二、ICP-MS系統操作條件之探討 67
三、液相層析條件最適化探討 68
四、DRC-ICP-MS系統最適化探討 69
五、分析訊號之再現性 69
六、校正曲線與偵測極限估計 70
七、真實樣品分析 70
肆、結果與討論
一、化學蒸氣生成系統條件最適化之探討 72
二、ICP-MS系統操作條件之探討 79
三、液相層析條件最適化探討 83
四、DRC-ICP-MS系統最適化探討 88
五、分析訊號之再現性 96
六、校正曲線與偵測極限估計 96
七、真實樣品分析 96
伍、結論 109
陸、參考文獻 110
參考文獻 References
1. Ikeda, M.; Zhang, Z.W.; Higashikawa, K.; Watanabe, T.; Shimbo, S.; Moon, C. S.; Nakatsuka, H.; Matsuda-Inoguchi, N., Background exposure of general women populations in Japan to cadmium in the environment and possible health effects. Toxicol. Lett. 1999, 108, 161-166
2. Tomiyasu, T.; Nagano, A.; Yonehara, N.; Sakamoto, H.; Rifardi; Oki, K.; Akagi, H., Mercury contamination in the Yatsushiro Sea, south-western Japan: spatial variations of mercury in sediment. Sci. Total Environ. 2000, 257, 121-132
3. 衛生署食品衛生管法“食米重金屬限量標準”民國九十六年六月
4. World Health Organization “antimony in drinking-water” 2003
5. 衛生署食品衛生管法“含難消化糊精保健機能性食品規格基準” 民國九十六年六月
6. Gupta, S.; Pandotra, P.; Gupta, A. P.; Dhar, J. K.; Sharma, G.; Ram, G.; Husain, M. K.; Bedi, Y.S., Volatile (As and Hg) and non-volatile (Pb and Cd) toxic heavy metals analysis in rhizome of Zingiber officinale collected from different locations of North Western Himalayas by Atomic Absorption Spectroscopy. Food Chem. Toxicol. 2010, 48, 2966-2971
7. Quiroz, W.; Arias, H.; Bravo, M.; Pinto, M.; Lobos, M. G.; Cortés, M., Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchem. J. 2011, 97, 78-84
8. Escudero, L. A.; Cerutti, S.; Martinez, L. D.; Salonia, J. A.; Gasquez, J. A., On-line preconcentration of zinc on ethyl vinyl acetate prior to its determination by CVG-ICP-OES. Microchem. J. 2013, 106, 34-40
9. Kenduzler, E.; Ates, M.; Arslan, Z.; McHenry, M.; Tchounwou, P. B., Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Talanta 2012, 93, 404-410
10. Vieira, M. A.; Ribeiro, A. S.; Dias, L. F.; Curtius, A. J., Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium. Spectrochim. Acta Part B 2005, 60, 643-652
11. Liu X.; Zhang, W.; Hu, Y.; Cheng, H., Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchem. J. 2013, 108, 38-45
12. Hsieh, Y. J; Jiang, S. J., Determination of selenium compounds in food supplements using reversed-phase liquid chromatography–inductively coupled plasma mass spectrometry. Microchem. J. 2013, 110, 1-7
13. Tseng, Y. J.; Liu, C. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588, 173-178
14. Guo, X.; He, M.; Chen, B., Hu, B., Solidified floating organic drop microextraction combined with ETV-ICP-MS for the determination of trace heavy metals in environmental water samples. Talanta 2012, 94, 70-76
15. Xu, J; Hu, Z. C.; Liu, Y. S.; Hu, S. H.; Yuan, H. L.; Gao, S., Direct determination of Ag in Geological Samples by Membrane Desolvation-Inductively Coupled Plasma-Mass Spectrometer. Chin J Anal Chem 2008, 36, 1493–1498
16. Arslan, Y.; Yildirim, E.; Gholami, M.; Bakirdere, S., Lower limits of detection in
speciation analysis by coupling high-performance liquid chromatography and chemical vapor generation. TrAC, Trends Anal. Chem. 2011, 30, 569-585
17. Yan, X. P.; Ni, Z. M., Vapour generation atomic absorption spectrometry. Anal. Chim. Acta 1994, 291, 89-105
18. Pohl. P. Recent advances in chemical vapour generation via reaction
with sodium tetrahydroborate. TrAC, Trends Anal. Chem. 2004, 23, 21-27
19. Ferreira, S. L. C.; Araujo, R. G. O.; Dias, F. D.; Macedo, S. M.; Santos, W. N. L., Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry. Food chem. 2007, 101,397-400
20. Curtius, A. J.; Vieria, M. A.; Ribeiro, A. S.; Dias, L. F., Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium. Spectrochim. Acta Part 2005, 60, 643-652
21. Curtius, A. J.; Santos, E. J. D.; Herrmann, A. B.; Frescura, V. L. A., Evaluation of slurry preparation procedures for the simultaneous determination of Hg and Se in biological samples by axial view ICP OES using on-line chemical vapor generation. Anal. Chim. Acta 2005, 548, 166-173
22. Jiang, S. J.; Lin, M. L., Determination of As, Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Food Chem., 2013, 141, 2158-2162.
23. Jiang, S. J.; Ni, J. L.; Liu, C. C., Determination of Ga, Ge, As, Se and Sb in fly ash samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2005, 550, 144-150
24. J. Ruzicka and E. H. Hansen, “Flow Injection Analysis” , 2nd ed., Wiley, New York, 1998.
25. D’Ulivo, A., Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim. Acta Part B 2004, 59, 793-825
26. Silva, M. M. D.; Jesus, A. D.; Zmozinski, A. V.; Vieira, M. A.; Ribeiro, A. S., Determination of mercury in naphtha and petroleum condensate by photochemical vapor generation atomic absorption spectrometry. Microchem. J. 2013, 110, 227-232
27. Liao, P. H.; Jiang, S. J.; Sahayam, A. C., Cloud point extraction combined with flow injection vapor generation inductively coupled plasma mass spectrometry for preconcentration and determination of Ultra trace Cd, Sb and Hg in water samples. J. Anal. At. Spectrom. 2012, 27, 1518-1524
28. Zhu, Y.; Chiba, K., Determination of cadmium in food samples by ID-ICP-MS with solid phase extraction for eliminating spectral-interferences. Talanta, 2012, 90, 57-62
29. Sin, D. W. M.; Lam, J. C. W.; Chan, K. K.; Yip, Y. C.; Tong, W. F., Accurate determination of lead in Chinese herbs using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Food chem. 2010, 121, 552-560
30. Hwang, T. J.; Jiang, S. J., Determination of copper, cadmium and lead in biological samples by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment bu anodic stripping voltammetry. J. Anal. At. Spectrom. 1996, 11, 353-357
31. 黃覃君,“流動注入冷蒸氣生成裝置結合同位素稀釋感應耦合電漿質譜儀分析法定量真實樣品中微量鎘之研究”,中山大學碩士論文,民國八十八年七月。
32. Guardia, M. D. L.; Cava-Montesinos, P.; Guardia, A. D. L.; Teutsch, C.; Cervera, M. L., Speciation of selenium and tellurium in milk by hydride generation atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2004, 19, 696-699
33. 陳自強,“氫化物生成技術結合動態反應管感應耦合電漿質譜儀在生物及鎳合金樣品中鎵、鍺、砷、硒、銻之分析”,中山大學碩士論文,民國九十四年七月。
34. 陳鳳儀,“流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀以直接分析燃油與穀物樣品中鉛、鎘、汞及砷之應用”,中山大學碩士論文,民國九十四年七月。
35. Guo, X.; Guo, X., Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Anal. Chim. Acta 1995, 310, 377-385
36. 陳彥良,“氫化物生成技術結合感應耦合電漿質譜儀於碲元素分析及銻物種分析之應用”,中山大學碩士論文,民國八十九年七月。
37. Li, J.; Lu, F.; Umemura, T.; Tsunoda, K., Determination of lead by hydride generation inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2000, 419, 65-72
38. Frank, J.; Krachler, M.; Shotyk, W., Direct determination of arsenic in acid digests of plant and peat samples using HG-AAS and ICP-SF-MS. Anal. Chim. Acta 2005, 530, 307-316
39. Suo, R.; Sun, H. W., Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta 2004, 509, 71-76
40. Sanz-Medel, A.; Temprano, M. C. V. H. Y.; Garcia, N. B.; Campa, M. R. F. D. L., Generation of cadmium atoms at room temperature using vesicles and its application to cadmium determination by cold vapor atomic spectrometry. Anal. Chem. 1995, 67, 2216-2223
--------------------------------------------------------------------------------------------------------------------
1. IPCS (2001). Arsenic and arsenic compounds. Geneva: World Health Organization.
2. Fujino, Y.; Guo, X.; Liu, J.; You, L.; Miyatake, M.; Yoshimura, T.; JIAMP Study Group, Mental health burden amongst inhabitants of an arsenic-affected area in Inner Mongolia China. Soc. Sci. Med. 2004, 59, 1969-1973.
3. Leermakers, M.; Baeyens, W.; De Gieter M.; Smedts, B.; Meert, C.; De Bisschop, H. C.; Morabito, R.; Quevauviller, Ph., Toxic arsenic compounds in environmental samples: speciation and validation. Trends Anal. Chem. 2006, 25, 1-10.
4. Sakurai, T.; Kaise, T.; Ochi, T.; Saitoh, T.; Matsubara, C., Study of in vitro cytotoxicity of a water soluble organic aesenic compound, arsenosugar, in seaweed. Toxicology 1997, 122, 205-212.
5. Dressler, V. L.; Moreira, C. M.; Duarte, F. A.; Lebherz, J.; Pozebon, D.; Flores, E. M. M., Arsenic speciation in white wine by LC-ICP-MS. Food Chem. 2011, 126, 1406-1411.
6. Cheng, H.; Liu, X.; Zhang, W.; Hu, Y., Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC-ICP-MS. Microchem. J. 2013, 108, 38-45.
7. Heitland, P.; Koster, H. D., Comparison of different medical cases in urinary arsenic speciation by fast HPLC-ICP-MS. Int. J. Hyg. Environ. Health 2009, 212, 432-438.
8. Yan, X. P.; Ni, Z. M., Vapour generation atomic absorption spectrometry. Anal. Chim. Acta 1994, 291, 89-105.
9. Magnuson, M. L.; Creed, J. T.; Brockhoff, C. A., Speciation of Arsenic compounds by ion chromatography with inductively coupled plasma mass spectrometry detection utilizing hydride generation with a membrane separator. J. Anal. At. Spectrom. 1996, 11, 893-898.
10. Hwang, C. J.; Jiang, S. J., Determination of arsenic compounds in water samples by liquid chromatography-inductively coupled plasma mass spectrometry with an in situ nebulizer-hydride generator. Anal. Chim. Acta 1994, 289, 205-213.
11. Welz, B.; Tsalev, D. L.; Sperling, M., Flow-injection hydride generation atomic absorption spectrometric study of the automated on-line pre-reduction of arsenate, methylarsonate and dimethylarsinate and high-performance liquid chromatographic separation of their L-cysteine complexes. Talanta 2000, 51, 1059-1068.
12. 行政院農業委員會農業藥物毒物試驗所 “食品中重金屬含量及管制標準”,民國九十一年.
13. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F., Dynamic reaction cell ICP-MS for determination of total As, Cr, Se, and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698, 6-13.
14. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem. 2002, 74, 1497-1502.
15. 陳鳳儀, “流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀分析乳化油品中鉛及汞之應用”, 中山大學碩士論文, 民國97年6月
16. 謝雨哲, “液相層析結合感應耦合電漿質譜儀及電灑質譜儀於藍綠藻中含砷化合物分析及應用”, 中山大學碩士論文, 民國100年7月
17. Feng, Y. L.; Chen, H. Y.; Tian, L. C.; Narasaki, H., Off-line separation and determination of inorganic arsenic species in natural water by high resolution inductively coupled plasma mass spectrometry with hydride generation combined with reaction of arsenic(V) and L-cysteine. Anal. Chim. Acta 1998, 375, 167-175.
18. D’Ulivo, A., Mechanism of generation of volatile species by aqueous boranes towards the clarification of most controversial aspects. Spectrochim. Acta, Part B 2010, 65, 360-375.
19. D’Ulivo, A., Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media. A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim. Acta, Part B 2004, 59, 793-825.
20. 蔡瑤璇, “雙管柱串聯液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於食用藻類中砷物種分析之應用”, 中山大學碩士論文, 民國102年6月
21. Song, M.; Hang, T.; Zhang, Y.; Qiang, S.; Sun, J., Liquid chromatography-hydride generation-atomic fluorescence spectrometry determination of arsenic species in dog plasma and its application to a pharmacokinetic study after oral administration of Realgar and Niu Huang Jie Du Pian. J. Chromatogr. B 2013, 917, 93-99.
22. Huang, Y. L.; Tseng, W. C.; Cheng, G. W.; Lee, C. F.; Wu, H. L., On-line coupling of microdialysis sampling with high performance liquid chromatography and hydride generation atomic absorption spectrometry for continuous in vivo monitoring of arsenic species in the blood of living rabbits. Anal. Chim. Acta 2005, 543, 38-45.
23. Le, X. C.; Chen, L. W. L.; Lu, X., Complementary chromatography separation combined with hydride generation-inductively coupled plasma mass spectrometry for arsenic speciation in human urine. Anal. Chim. Acta 2010, 675, 71-75.
24. Sun, Y. C.; Chen, Y. J.; Tsai, Y. N., Determination of urinary arsenic species using an on-line nano-TiO2 photooxidation device coupled with microbore LC and hydride generation-ICP-MS system. Microchem. J. 2007, 86, 140-145.
25. Gomez-Ariza J. L.; Sanchez-Rodas, D.; Giraldez, I.; Morales, E., Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS. Analyst 2000, 125, 401-407.
26. Wang, S.; Zhao, X., On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manage. 2009, 90, 2367-2376.
27. Matousek, T.; Currier, J. M.; Trojankova, N.; Saunders, R. J.; Ishida, M. C.; Gonzalez-Horta, C.; Musil, S.; Mester, Z., Selective hydride generation-cryotrapping-ICP-MS for arsenic speciation analysis at pictogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. J. Anal. At. Spectrom. 2013, advance article.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code