Responsive image
博碩士論文 etd-0704114-162507 詳細資訊
Title page for etd-0704114-162507
論文名稱
Title
以分子動力學研究鈦鋯鉭矽金屬玻璃之結構與機械性質
Investigation on mechanical and structure properties of Ti60Zr10Ta15Si15 Bulk Metallic Glasses: A molecular dynamics study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-08-07
關鍵字
Keywords
Tersoff 勢能、密度泛函理論、機械性質、Tight-Binding勢能、分子動力學、金屬玻璃
Tersoff potential, Tight-Binding potential, Bulk metallic glasses, Molecular dynamics, Density Functional Theory, mechanical properties
統計
Statistics
本論文已被瀏覽 5683 次,被下載 654
The thesis/dissertation has been browsed 5683 times, has been downloaded 654 times.
中文摘要
本文用分子動力學研究Ti60Zr10Ta15Si15金屬玻璃的機械與結構性質。為了模擬這個四元的合金系統,文中同時使用了兩種勢能函數,因鉭矽這個組合經過電子密度分析之後,顯示出較薄弱的共價鍵特性,故使用Tight-binding函數用來模擬金屬原子間以及鉭與矽之間的交互作用。Tersoff 函數則用來模擬矽與鋯、矽與鈦、矽與矽之間的作用。而為了可以正確的描述這些原子間的作用,我們將密度泛函理論計算出來的彈性模數、鍵結能與原子間的作用力當作參考的目標值,並擬合適和Ti60Zr10Ta15Si15金屬玻璃材料的勢能參數。
得到準確的勢能參數後,基於這些勢能參數建立出Ti60Zr10Ta15Si15金屬玻璃的模型,並利用分子動力學理論去模擬此金屬玻璃受到張應力下的結構變化以及得到應力應變的資料,從應力應變曲線可求得楊氏模數大約為93GPa與實驗值88GPa相近,且曲線也透露出該金屬玻璃具有延展性而由局部應力分析看出該BMG受張力變形時,剪切帶的形成非常均勻,沒有主要方向,故提升了延展性。之後再用Voronoi tessellation analysis 以及 HA 指數 來分析Ti60Zr10Ta15Si15 金屬玻璃材料受到張應力時的結構變化以及塑性行為,發現到正二十面體以及矽周圍的結構在變形時變動最為劇烈。
Abstract
The mechanical and structural properties of Ti60Zr10Ta15Si15 bulk metallic glasses have been investigated by molecular dynamics (MD) simulation. In order to simulate the Ti-Zr-Ta-Si systems, two potential functions were employed. The tight binding (TB) potential was used to model the interactions between metallic elements (Ti,Zr,Ta) and the Ta-Si pair which showed less covalency based on the electron density analysis. The modified Tersoff potential was used to model the interactions between Si-Zr, Si-Ti and Si-Si pairs. All parameters of TB and modified Tersoff potentials were fitted on the basis of several reference data including the binding energies, atomic forces of structures at equilibrium, elastic constants of pure Zr, Ti, Si, the binary intermetallic compound structures. These reference data were obtained from DFT calculations and experimental results, and the fitted parameters can reflect the properties of all reference data.
These parameters of TB and modified Tersoff were further applied in generating the structure of Ti60Zr10Ta15Si15 bulk metallic glass and then the molecular dynamic simulation was performed to do the tension test and get the stress-strain profiles. According to stress-strain profiles, Ti60Zr10Ta15Si15 bulk metallic glass is ductile and the estimated Young’s modulus is about 93GPa which is close to the experimental value. Local strain distribution was used for analyzing the deformation mechanism, and results show that shear band develops homogeneously which enhances the plasticity.
The Voronoi tessellation analysis and HA index were used for further investigating the plastic/elastic deformation mechanism. The results show that icosahedral local structure and the structure around Si atoms undergo a severe variation during the tension process.

Keywords: Bulk metallic glasses, Molecular dynamics, Density Functional Theory, mechanical properties,Tight-Binding potential, Tersoff potential
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖次 ix
表次 xi
第一章 緒論 1
 1.1 研究背景與介紹 1
 1.2 文獻回顧 5
 1.3 研究目的 7
 1.4 論文架構 8
第二章 理論基礎及方法. 9
 2.1 密度泛函理論(DENSITY FUNCTIONAL THEORY) 9
  2.1.1 Thomas-Fermi 理論 9
  2.1.2 Hohenberg-Kohn 理論 10
  2.1.4 Kohn-Sham 方程式 10
  2.1.5 交換相關函數(Exchange-Correlation Function) 11
  2.1.6 電子密度 12
 2.2 勢能函數 13
  2.2.1 原子間作用勢能 13
  2.2.2 擬合勢能參數 16
  2.2.3 Big-Bang (BB) method 17
  2.2.4 Basin-Hopping (BH) method . 18
 2.3 分子靜力學理論 19
  2.3.1 LBFGS 法 20
  2.3.2 火炎演算法 22
  2.3.3 共軛梯度法 23
 2.4 分子動力學理論 24
  2.4.1 積分法則 24
  2.4.2 諾斯-胡佛恆溫法(Nosé-Hoover thermostat) 25
  2.4.3 時間步階選取 27
 2.5 結構分析 28
  2.5.1 HA 鍵型指數法 28
  2.5.2 Vonronoi 指數分析 29
  2.5.3 原子級應力分析 29
  2.5.4 區域應變分析 32
 2.6 週期邊界的處理 33
 2.7 鄰近原子表列數值方法 34
  2.7.1 截斷半徑法 34
  2.7.2 Verlet List 表列法 35
  2.7.3 Cell Link 表列法 . 37
  2.7.4 Verlet List 結合Cell Link 表列法 37
 2.8 模擬流程 39
第三章 結果與討論. 42
 3.1 擬合勢能參數 42
  3.1.1 尋找最佳DFT 設定及建立reference data 42
  3.1.2 選擇適合的勢能描述原子間作用力 53
  3.1.3 參數擬合結果 55
 3.2 模型建立及分析 59
  3.2.1 試驗之物理模型建構 59
  3.2.2 試驗之物理模型分析 59
 3.3 拉伸試驗與機械性質探討 67
  3.3.1 拉伸模型建立 67
  3.3.2 試驗結果分析 67
第四章 結論與建議. 76
 4.1 結論 76
 4.2 建議與未來展望 78
參考文獻 79
參考文獻 References
[1] S. H. Liang, Y. Dai, J. H. Li, and B. X. Liu, "Glass Forming Region of Cu-Ti-Hf Ternary Metal System Derived from the n-Body Potential through Molecular Dynamics Simulation," Journal of Physical Chemistry B, vol. 114, pp. 9540-9545, Jul 2010.
[2] K. Dehghani and A. A. Khamei, "Hot deformation behavior of 60Nitinol (Ni-60wt%-Ti-40wt%) alloy: Experimental and computational studies," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 527, pp. 684-690, Jan 2010.
[3] H. S. Wang, H. G. Chen, J. S. C. Jang, and M. S. Chiou, "Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si-0.5 bulk metallic glass welding," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 528, pp. 338-341, Nov 2010.
[4] J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, and P. K. Liaw, "Thin film metallic glasses: Preparations, properties, and applications," Jom, vol. 62, pp. 19-24, Apr 2010.
[5] J. Jing, A. Kramer, R. Birringer, H. Gleiter, and U. Gonser, "MODIFIED ATOMIC-STRUCTURE IN A PD-FE-SI NANOGLASS - A MOSSBAUER STUDY," Journal of Non-Crystalline Solids, vol. 113, pp. 167-170, Dec 1989.
[6] R. Raghavan, K. Boopathy, R. Ghisleni, M. A. Pouchon, U. Ramamurty, and J. Michler, "Ion irradiation enhances the mechanical performance of metallic glasses," Scripta Materialia, vol. 62, pp. 462-465, Apr 2010.
[7] A. Makino, T. Kubota, C. Chang, M. Makabe, and A. Inoue, "FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness," Journal of Magnetism and Magnetic Materials, vol. 320, pp. 2499-2503, Oct 2008.
[8] J. J. Oak, D. V. Louzguine-Luzgin, and A. Inoue, "Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior," Journal of Materials Research, vol. 22, pp. 1346-1353, May 2007.
[9] W. Klement, R. H. Willens, and P. Duwez, "NON-CRYSTALLINE STRUCTURE IN SOLIDIFIED GOLD-SILICON ALLOYS," Nature, vol. 187, pp. 869-870, 1960.
[10] A. Inoue, "HIGH-STRENGTH BULK AMORPHOUS-ALLOYS WITH LOW CRITICAL COOLING RATES," Materials Transactions Jim, vol. 36, pp. 866-875, Jul 1995.
[11] J. Q. Wang, J. Y. Qin, X. N. Gu, Y. F. Zheng, and H. Y. Bai, "Bulk metallic glasses based on ytterbium and calcium," Journal of Non-Crystalline Solids, vol. 357, pp. 1232-1234, Feb 2011.
[12] Q. K. Jiang, G. Q. Zhang, L. Yang, X. D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, and J. Z. Jiang, "La-based bulk metallic glasses with critical diameter up to 30 mm," Acta Materialia, vol. 55, pp. 4409-4418, Aug 2007.
[13] J. P. Chu, "Annealing-Induced Amorphization in a Glass-Forming Thin Film," Jom, vol. 61, pp. 72-75, Jan 2009.
[14] J. F. Wang, Y. Y. Wei, S. F. Guo, S. Huang, X. E. Zhou, and F. S. Pan, "The Y-doped MgZnCa alloys with ultrahigh specific strength and good corrosion resistance in simulated body fluid," Materials Letters, vol. 81, pp. 112-114, Aug 2012.
[15] S. L. Zhu, X. M. Wang, F. X. Qin, and A. Inoue, "A new Ti-based bulk glassy alloy with potential for biomedical application," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 459, pp. 233-237, Jun 2007.
[16] S. L. Zhu, X. J. Yang, D. H. Fu, L. Y. Zhang, C. Y. Li, and Z. D. Cui, "Stress-strain behavior of porous NiTi alloys prepared by powders sintering," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 408, pp. 264-268, Nov 2005.
[17] Y. B. Wang, X. H. Xie, H. F. Li, X. L. Wang, M. Z. Zhao, E. W. Zhang, Y. J. Bai, Y. F. Zheng, and L. Qin, "Biodegradable CaMgZn bulk metallic glass for potential skeletal application," Acta Biomaterialia, vol. 7, pp. 3196-3208, Aug 2011.
[18] L. Q. Xing, Y. Li, K. T. Ramesh, J. Li, and T. C. Hufnagel, "Enhanced plastic strain in Zr-based bulk amorphous alloys," Physical Review B, vol. 64, p. 180201, 2001.
[19] C. L. Qiu, Q. Chen, L. Liu, K. C. Chan, J. X. Zhou, P. P. Chen, and S. M. Zhang, "A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility," Scripta Materialia, vol. 55, pp. 605-608, 2006.
[20] Y.-L. Zhou and M. Niinomi, "Microstructures and mechanical properties of Ti–50 mass% Ta alloy for biomedical applications," Journal of Alloys and Compounds, vol. 466, pp. 535-542, 2008.
[21] X. J. Han and H. Teichler, "Liquid-to-glass transition in bulk glass-forming Cu60Ti20Zr20 alloy by molecular dynamics simulations," Physical Review E, vol. 75, Jun 2007.
[22] S. W. Kao, C. C. Hwang, and T. S. Chin, "Simulation of reduced glass transition temperature of Cu-Zr alloys by molecular dynamics," Journal of Applied Physics, vol. 105, Mar 2009.
[23] Y. C. Lo, J. C. Huang, S. P. Ju, and X. H. Du, "Atomic structure evolution of Zr-Ni during severe deformation by HA pair analysis," Physical Review B, vol. 76, p. 024103, 2007.
[24] K. Tsumuraya, K. Ishibashi, and K. Kusunoki, "Statistics of Voronoi polyhedra in a model silicon glass," Physical Review B, vol. 47, pp. 8552-8557, 1993.
[25] A. Franceschetti, S. J. Pennycook, and S. T. Pantelides, "Oxygen chemisorption on Au nanoparticles," Chemical Physics Letters, vol. 374, pp. 471-475, Jun 18 2003.
[26] G. H. Ryu, S. C. Park, and S. B. Lee, "Molecular orbital study of the interactions of CO molecules adsorbed on a W(111) surface," Surface Science, vol. 427-28, pp. 419-425, Jun 1 1999.
[27] P. Hohenberg and W. Kohn, "INHOMOGENEOUS ELECTRON GAS," Physical Review B, vol. 136, pp. B864-&, 1964.
[28] W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange and Correlation Effects," Physical Review, vol. 140, pp. 1133-&, 1965.
[29] V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and Structural-Properties of Fcc Transition-Metals Using a Simple Tight-Binding Model," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 59, pp. 321-336, Feb 1989.
[30] M. S. Daw and M. I. Baskes, "Embedded-Atom Method - Derivation and Application to Impurities, Surfaces, and Other Defects in Metals," Physical Review B, vol. 29, pp. 6443-6453, 1984.
[31] S. M. Foiles, M. I. Baskes, and M. S. Daw, "Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys," Physical Review B, vol. 33, pp. 7983-7991, Jun 15 1986.
[32] F. Ercolessi and J. B. Adams, "Interatomic Potentials from 1st-Principles Calculations - the Force-Matching Method," Europhysics Letters, vol. 26, pp. 583-588, Jun 10 1994.
[33] D. J. Wales and J. P. K. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms," Journal of Physical Chemistry A, vol. 101, pp. 5111-5116, Jul 10 1997.
[34] K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg, "Unraveling the shape transformation in silicon clusters," Physical Review Letters, vol. 93, Jul 2 2004.
[35] D. C. Liu and J. Nocedal, "On the Limited Memory Bfgs Method for Large-Scale Optimization," Mathematical Programming, vol. 45, pp. 503-528, Dec 1989.
[36] S. Hamad, C. R. A. Catlow, S. M. Woodley, S. Lago, and J. A. Mejias, "Structure and stability of small TiO2 nanoparticles," Journal of Physical Chemistry B, vol. 109, pp. 15741-15748, Aug 25 2005.
[37] W. W. Hager and H. C. Zhang, "A new conjugate gradient method with guaranteed descent and an efficient line search," Siam Journal on Optimization, vol. 16, pp. 170-192, 2005.
[38] L. Zhang, W. J. Zhou, and D. H. Li, "Some descent three-term conjugate gradient methods and their global convergence," Optimization Methods & Software, vol. 22, pp. 697-711, Aug 2007.
[39] W. Quapp, "A growing string method for the reaction pathway defined by a Newton trajectory," Journal of Chemical Physics, vol. 122, May 1 2005.
[40] C. G. Broyden, "Convergence of Single-Rank Quasi-Newton Methods," Mathematics of Computation, vol. 24, pp. 365-&, 1970.
[41] R. Fletcher, "A New Approach to Variable Metric Algorithms," Computer Journal, vol. 13, pp. 317-&, 1970.
[42] D. Goldfarb, "A Family of Variable-Metric Methods Derived by Variational Means," Mathematics of Computation, vol. 24, pp. 23-&, 1970.
[43] D. F. Shanno, "Conditioning of Quasi-Newton Methods for Function Minimization," Mathematics of Computation, vol. 24, pp. 647-&, 1970.
[44] R. H. Byrd, P. H. Lu, J. Nocedal, and C. Y. Zhu, "A Limited Memory Algorithm for Bound Constrained Optimization," Siam Journal on Scientific Computing, vol. 16, pp. 1190-1208, Sep 1995.
[45] P. A. T. Olsson, S. Melin, and C. Persson, "Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams," Physical Review B, vol. 76, Dec 2007.
[46] E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch, "Structural relaxation made simple," Physical Review Letters, vol. 97, Oct 27 2006.
[47] N. Andrei, "Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," Optimization Methods & Software, vol. 22, pp. 561-571, Aug 2007.
[48] B. J. O. Teleman, S. Engstrom, "A molecular-dynamics simulation of a water model with intramolecular defgrees of freedom," Mol. Phys., vol. 60, pp. 193-203, 1987.
[49] S. Nose, "A unified formulation of the constant temperature molecular-dynamics methods," J. Chem. Phys., vol. 81, pp. 511-519, 1984.
[50] S. C. M.S. Lee, D.G. Kanhere, "First-principles investigation of finite-temperature behavior in small sodium clusters," J. Chem. Phys., vol. 123, 2005.
[51] M. S. L. S.M. Ghazi, D.G. Kanhere, " The effects of electronic structure and charged state on thermodynamic properties: An ab initio molecular dynamics investigations on neutral and charged clusters of Na-39, Na-40, and Na-41," J. Chem. Phys., vol. 128, 2008.
[52] S. N. a. C. S. N. Chandra, "Local elastic properties of carbon nanotubes in the presence of tone-wales defects," Physical Review B, vol. 69, p. 094101, 2004.
[53] M. H. N. Tokita, C. Azuma and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," Journal of Chemical Physics, vol. 120, pp. 496-505, 2004.
[54] J. D. Honeycutt and H. C. Andersen, "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters," Journal of Physical Chemistry, vol. 91, pp. 4950-4963, 1987.
[55] N. Chandra, S. Namilae, and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Physical Review B, vol. 69, Mar 2004.
[56] H. C. Hsu, J. H. Chien, J. S. Huang, L. M. Chu, and S. L. Fu, "Nanoscale bondability between Cu-Al intermetallic compound for Cu wirebonding," in Electronics Packaging (ICEP), 2014 International Conference on, 2014, pp. 618-622.
[57] D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural Defects in Amorphous Solids Statistical-Analysis of a Computer-Model," Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 44, pp. 847-866, 1981.
[58] H. Rafii-Tabar, "Computational modelling of thermo-mechanical and transport properties of carbon nanotubes (vol 390, pg 235, 2004)," Physics Reports-Review Section of Physics Letters, vol. 394, pp. 357-357, May 2004.
[59] N. Tokita, M. Hirabayashi, C. Azuma, and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," Journal of Chemical Physics, vol. 120, pp. 496-505, Jan 1 2004.
[60] A. Gannepalli and S. K. Mallapragada, "Molecular dynamics studies of plastic deformation during silicon nanoindentation," Nanotechnology, vol. 12, pp. 250-257, Sep 2001.
[61] A. J. Cao, Y. Q. Cheng, and E. Ma, "Structural processes that initiate shear localization in metallic glass," Acta Materialia, vol. 57, pp. 5146-5155, Oct 2009.
[62] F. Shimizu, S. Ogata, and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, vol. 48, pp. 2923-2927, Nov 2007.
[63] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, "Size dependence of Young's modulus in ZnO nanowires," Physical Review Letters, vol. 96, Feb 24 2006.
[64] D. Frenkel and J. P. Hansen, "Understanding liquids: A computer game?," Physics World, vol. 9, pp. 35-40, Apr 1996.
[65] M. P. Allen and D. J. Tildesley, Computer simulation of liquids: Oxford university press, 1989.
[66] D. C. Rapaport, The art of molecular dynamics simulation: Cambridge university press, 2004.
[67] J. M. Haile, Molecular dynamics simulation: elementary methods: John Wiley & Sons, Inc., 1992.
[68] O. Schob, F. Benesovsky, and H. Nowotny, "Strukturbestimmung an Einigen Phasen in Den Systemen - Zr-Al-Si Und Hf-Al-Si[Zral3(Si) - Zrsi(Al), Hf(Si,Al) - Zr3si2 - Hf3si2]," Monatshefte Fur Chemie, vol. 92, pp. 1218-&, 1961.
[69] K. S. A. Raman, Z. Metallkd, vol. 56, pp. 44-52, 1965.
[70] M. Setton and J. Vanderspiegel, "STRUCTURAL AND ELECTRICAL-PROPERTIES OF ZRSI2 AND ZR2CUSI4 FORMED BY RAPID THERMAL-PROCESSING," Journal of Applied Physics, vol. 70, pp. 193-197, Jul 1991.
[71] O. G. K. Y. A. Kocherzhinskii, Shishkin E.A., Doklady Chemistry, vol. 261, pp. 464-465, 1981.
[72] I. Engström and B. Lönnberg, "Thermal expansion studies of the group IV‐VII transition‐metal disilicides," Journal of Applied Physics, vol. 63, pp. 4476-4484, 1988.
[73] N. F. P. G. V. Samsonov, L.A. Dvorina, Inorg. Mater., vol. 13, pp. 1429-1431, 1977.
[74] J. Jongste, O. Loopstra, G. Janssen, and S. Radelaar, "Elastic constants and thermal expansion coefficient of metastable C49 TiSi2," Journal of Applied Physics, vol. 73, pp. 2816-2820, 1993.
[75] Y. A. K. V.N. Svechnikov, L.M. Yupko, O.G. Kulik, E.A. Shishkin, Dokl. Chem. Technol., vol. 192, pp. 82-85, 1970.
[76] M. A. Karolewski, "Tight-binding potentials for sputtering simulations with fcc and bcc metals," Radiation Effects and Defects in Solids, vol. 153, pp. 239-255, 2001.
[77] B.-T. Wang, P. Zhang, H.-Y. Liu, W.-D. Li, and P. Zhang, "First-principles calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium," Journal of Applied Physics, vol. 109, p. 063514, 2011.
[78] X. M. Tao, P. Jund, C. Colinet, and J. C. Tedenac, "Phase stability and physical properties of Ta5Si3 compounds from first-principles calculations," Physical Review B, vol. 80, Sep 2009.
[79] N. Tarrat, M. Benoit, and J. Morillo, "Core structure of screw dislocations in hcp Ti: an ab initio DFT study," International Journal of Materials Research, vol. 100, pp. 329-332, 2009.
[80] W. R. Duncan and O. V. Prezhdo, "Electronic structure and spectra of catechol and alizarin in the gas phase and attached to titanium," The Journal of Physical Chemistry B, vol. 109, pp. 365-373, 2005.
[81] J. P. Perdew and Y. Wang, "Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy," Physical Review B, vol. 45, pp. 13244-13249, Jun 15 1992.
[82] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical Review Letters, vol. 77, pp. 3865-3868, Oct 28 1996.
[83] C. Kittel and P. McEuen, Introduction to solid state physics vol. 7: Wiley New York, 1996.
[84] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's Modulus of Silicon?," Journal of Microelectromechanical Systems, vol. 19, pp. 229-238, Apr 2010.
[85] J. Li, Y. Dai, X. Dai, T. Wang, and B. Liu, "Development of< i> n</i>-body potentials for hcp–bcc and fcc–bcc binary transition metal systems," Computational Materials Science, vol. 43, pp. 1207-1215, 2008.
[86] D. Ye, L. Jiahao, and L. Baixin, "Glass-forming ability and atomic-level structure of the ternary Ag–Ni–Zr metallic glasses studied by molecular dynamics simulations," Journal of Applied Physics, vol. 109, p. 053505, 2011.
[87] Y. Qi, T. Cagin, Y. Kimura, and W. A. Goddard, "Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni," Physical Review B, vol. 59, pp. 3527-3533, Feb 1 1999.
[88] X. Q. Wu, H. L. Wang, and J. G. Lin, "Effects of Sn content on thermal stability and mechanical properties of the Ti60Zr10Ta15Si15 amorphous alloy for biomedical use," Materials & Design, vol. 63, pp. 345-348, 2014.
[89] M. W. Chen, "Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility," Annual Review of Materials Research, vol. 38, pp. 445-469, 2008.
[90] K.-W. Park, E. Fleury, H.-K. Seok, and Y.-C. Kim, "Deformation behaviors under tension and compression: Atomic simulation of Cu65Zr35 metallic glass," Intermetallics, vol. 19, pp. 1168-1173, 2011.
[91] A. Cao, Y. Cheng, and E. Ma, "Structural processes that initiate shear localization in metallic glass," Acta Materialia, vol. 57, pp. 5146-5155, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code