Responsive image
博碩士論文 etd-0704115-004537 詳細資訊
Title page for etd-0704115-004537
論文名稱
Title
使用碳化矽窗口層之新穎性交疊式奈米柱HIT太陽能電池架構
A New Interdigitated Nanopillar HIT Solar Cell by Using Silicon-Carbide-Based Window Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-04
關鍵字
Keywords
異質接面太陽能電池、窗口層、寄生吸收損失、碳化矽、奈米柱
Nanopillar, Parasitic absorption loss, Heterojunction, Window layer, Silicon carbide
統計
Statistics
本論文已被瀏覽 5683 次,被下載 52
The thesis/dissertation has been browsed 5683 times, has been downloaded 52 times.
中文摘要
在本篇論文,我們提出了一具有使用碳化矽窗口層之新穎性交疊式奈米柱HIT太陽能電池架構(A New Interdigitated Nanopillar HIT Solar Cell by Using Silicon-Carbide-based Window Layer, INSC-HIT)。在此研究中,我們以非晶矽與單晶矽作為異質接面的主軸,其中非晶矽能隙在1.7 eV到1.9 eV之間,有較強的光吸收係數,單晶矽能隙約為1.12 eV,具有載子擴散長度較長之優點。且分別可以針對太陽光譜較短部分以及較長部分的波長進行吸收,同時達到吸收各個不同波段的波長,改善內部量子效率與外部量子效率。再結合新穎性奈米柱獨特的特性,除了抗反射能力、載子捕捉、逕向分離機制、延長吸收區域等,使入射光在奈米柱之間散射,進一步提升光子被吸收能力,增進短路電流密度。此外,還具有較大的電場分佈範圍,讓載子被電場涵蓋的範圍變大,使載子加速移動,減少到達電極前被復合的機會。此時,再沉積一層本質非晶矽鈍化層,降低因奈米柱延長表面積,所導致的表面復合速率增加,進而提升太陽能電池的轉換效率。此新架構模擬結果,轉換效率可以達到25.69 %,相較於目前傳統最高效率的平面式HIT太陽能電池(24.7 %)可提高3.85 %的轉換效率。另外,為了再次提高轉換效率,我們針對表面電極ITO與a-Si之間進行分析,發現存在著損失比例佔相當大的寄生光吸收損失。因此將窗口層p+-a-Si改為p+-a-SiC材料,其材料優點具有較寬之能隙(1.9~2.6 eV)、較高之導電性、較好之透光性、能降低與電極間之寄生光吸收損失。並使用模擬軟體進行厚度最佳化設計,結果我們發現在相同太陽能電池結構下,窗口層採用碳化矽材料可達到26.09 %的轉換效率。
本論文中,我們架構不需要使用交指式背電極IBC太陽能電池就能改善遮蔭效應和寄生吸收損失。為了因應低成本、高效能太陽能電池的發展趨勢,此新穎的架構,不僅製程相當簡單,且只需要一片光罩,就能完成此架構。不同於把電極製作在背後,導致製程相當繁雜,且成本上升。
Abstract
In this paper, a New Interdigitated Nanopillar HIT Solar Cells using Silicon-Carbide-based window layer (INSC-HIT) was proposed. By using Silvaco TCAD simulation, we demonstrated that the characteristics of it are significantly improved. The Interdigitated Nanopillar performance can enhance the light absorption, the antireflection behavior, and the light scattering significantly. The electric field region is large enough to ensure that the photo-generated carriers can reach the contacts without significant recombination. The area of the depletion region of Interdigitated Nanopillar is higher than that of traditional one, which cans benefit photon absorption. In addition, using Silicon-Carbide-based window layer is able to enhance the short-circuit current density by reducing the parasitic absorption losses in the ITO and a-Si layers without degrading the electrical performance of the device and reflection loss. Also, we can cut the required c-Si wafer thickness more than that required for the convention c-Si wafer in heterojunction solar cells thereby reducing the cost. By using silicon nanopillar the light absorption can be enhanced thus we can reduce c-Si wafer thickness and the total cost. The maximum short-circuit current density of 42.12 mA/cm2 is achieved. And, the conversion efficiency of INSC-HIT is 26.09 % which is higher than that of the conventional planar HIT solar cell (24.7 %).
目次 Table of Contents
論文審定書 i
英文論文審定書 ii
致謝 iii
中文摘要 iv
英文摘要 v
第一章、導論 1
1.1. 研究背景 1
1.2. 文獻回顧 3
1.3. 動機 7
第二章、元件製作 9
2.1. 模擬元件 9
2.1.1 使用碳化矽於窗口層之新穎性交疊式奈米柱HIT太陽能電池模擬 9
2.1.2. 模擬之物理模型與參數 10
2.2. 元件實作 12
2.2.1新穎性交疊式奈米柱HIT太陽能電池製程 12
2.2.2. 製程與光罩設計 12
第三章、模擬結果與討論 15
3.1. 傳統HIT太陽能電池 16
3.2. 新穎性交疊式奈米柱HIT太陽能電池 19
3.2.1. 模擬之最佳化 21
3.3. 使用碳化矽於窗口層之新穎性交疊式奈米柱HIT太陽能電池 40
3.3.1. 模擬之最佳化 42
3.4. 使用碳化矽於窗口層之新穎性交疊式奈米柱HIT太陽能電池插入一層非晶碳化矽本質層 45
3.5. 各類型太陽能電池最佳化結果之邊際效應比較(Benchmark comparison) 50
3.6. 實作量測結果與討論 53
3.6.1 新穎性交疊式奈米柱製程結果與討論 53
3.6.2 新穎性交疊式奈米柱太陽能電池量測 54
3.6.3 對照組傳統HIT太陽能電池量測 56
第四章、結論與未來展望 58
4.1. 結論 58
4.2. 未來展望 59
參考文獻 60
附錄A 68
光電效應 68
光伏特效應 69
太陽光譜 70
太陽能電池原理 73
太陽能電池的電性參數 74
光學特性探討 77
外部量子效率 78
內部量子效率 78
復合機制 79
蕭克力萊德霍爾復合(SRH recombination) 79
輻射復合(Radiative Recombination) 80
歐傑復合(Auger recombination) 81
太陽能電池的效率損失及提升 81
抗反射層與透明導電膜 82
論文著述 84
參考文獻 References
[1] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE J. Photovoltaics, pp. 1-4, 2013.
[2] W. Duan, J. Bian, J. Yu, J. Shi, and Z. Liu, “Ultrathin Crystalline Silicon Heterojunction Solar Cell Integrated on Silicon-on-Insulator Substrate,” IEEE Trans. Electron Devices, pp. 1-4, 2015.
[3] T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Solar Energy Materials and Solar Cells, vol. 95, pp. 18–21, 2012.
[4] X. Wen, X. Zeng, W. Liao, Q. Lei, and S. Yin, “An approach for improving the carriers transport properties of a-Si:H/c-Si heterojunction solar cells with efficiency of more than 27 %,” Solar Energy, vol. 96, pp. 168-176, 2013.
[5] L. Zhao, H. L. Li, C. L. Zhou, H. W. Diao, and W. J. Wang, “Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation,” Solar Energy, vol. 83, pp. 812-816, 2009.
[6] S. J. Lee, S. H. Kim, D. W. Kim, K. H. Kim, B. K. Kim, and J. Jang, “Effect of hydrogen plasma passivation on performance of HIT solar cells,” Solar Energy Materials and Solar Cells, vol. 95, pp. 81-83, 2011.
[7] W. R. Taube, A. Kumar, R. Saravanan, P. B. Agarwal, P. Kothari, B. C. Joshi, and D. Kumar, “Efficiency enhancement of silicon solar cells with silicon nanocrystals embedded in PECVD silicon nitride matrix,” Solar Energy Materials and Solar Cells, vol. 101, pp. 32-35, 2012.
[8] Y. Lee, D. V. Ai, S. Kim, S. Han, H. Kim, and J. Yi, “A Study of Tunnel Recombination Junction on a-Si:H/HIT Tandem Structure Solar Cell,” in Proc. 39th IEEE Photovoltaic Spec. Conf., 2013, pp. 1361-1363.
[9] F. Jay, D. Munoz, T. Desrues, E. Pihan, V. A. D. Oliveira, N. Enjalbert, and A. Jouini, “Advanced process for n-type mono-like silicon a-Si:H/c-Si heterojunction solar cells with 21.5 % efficiency,” Solar Energy Materials and Solar Cells, vol. 130, pp. 690-695. 2014.
[10] S. Kim, J. Lee, V. A. Dao, S. Lee, N. Balaji, S. Ahn, S. Q. Hussain, S. Han, J. Jung, J. Jang, Y. Lee, and J. Yi, “Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells,” Mater. Sci. Eng., vol. 178, pp. 660-664, 2013.
[11] D. Zhang, I. A. Digdaya, R. Santbergen, R.A.C.M.M.V. Swaaij, P. Bronsveld, M. Zeman, J. A. M. V. Roosmalen, and A. W. Weeber, “Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 117, pp. 132-138, 2013.
[12] B. Grancic, S. Solntsev, and M. Zeman, “Performance Analysis of Thin-Film Crystalline Silicon-on-Glass Solar Cells,” IEEE J. Photovoltaics, vol. 3, no. 4, pp. 1144-1148, Oct 2013.
[13] D. Y. Jeong, K. Kim, H. E. Song, J. Song, S. J. Baik, and J. C. Lee, “Simple and fast fabrication of a-Si:H/c-Si hetero-junction solar cells by dual-chamber hot wire chemical vapor deposition,” Renewable Energy, vol. 68, pp. 397-402, 2014.
[14] X. Hua, Z. P. Li, W. Z. Shen, G. Y. Xiong, X. S. Wang, and L. J. Zhang, “Mechanism of Trapping Effect in Heterojunction With Intrinsic Thin-Layer Solar Cells: Effect of Density of Defect States,” IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1227-1235, May 2012.
[15] Y. Liu, Y. Sun, W. Liu, Z. Zhou, and J. Yao, “Novel High-Efficiency c-Si Compound Heterojunction Solar Cells: HCT (Heterojunction with Compound Thin-layer),” in Proc. 40th IEEE Photovoltaic Spec. Conf., 2014, pp. 2510-2513.
[16] Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. D. Wolf, and C. Ballif, “Current Losses at the Front of Silicon Heterojunction Solar Cells,” IEEE J. Photovoltaics, vol. 2, no. 1, pp. 7-15, Jan 2012.
[17] J. Wu, Y. Liu, X. Wang, and L. Zhang, “Application of ion Implantation Emitter in PERC Solar Cells,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 52-57, Jan 2014.
[18] J. Muller, D. Hinken, S. Blankemeyer, H. Kohlenberg, U. Sonntag, K. Bothe, T. Dullweber, M. Kontges, and R. Brendel, “Resistive Power Loss Analysis of PV Modules Made From Halved 15.6 x 15.6 cm2 Silicon PERC Solar Cells With Efficiencies up to 20.0 %,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 189-194, Jan 2015.
[19] M. Muller, P. P. Altermatt, H. Wagner, and G. Fischer, “Sensitivity Analysis of Industrial Multicrystalline PERC Silicon Solar Cells by Means of 3-D Device Simulation and Metamodeling,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 107-113, Jan 2014.
[20] K. Dressler, M. Rauer, M. Kaloudis, S. Dauwe, A. Herguth, and G. Hahn, “Nondestructive Characterization of Voids in Rear Local Contacts of PERC-Type Solar Cells,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 70-76, Jan 2015.
[21] B. Thaidigsmann, A. Drews, T. Fellmeth, P. S. Cast, A. Wolf, F. Clement, R. Preu, and D. Biro, “Synergistic Effects of Rear-Surface Passivation and the Metal Wrap Through Concept,” IEEE J. Photovoltaics, vol. 2, no. 2, pp. 109-113, Apr 2012.
[22] E. Lohmuller, B. Thaidigsmann, M. Pospischil, U. Jager, S. Mack, J. Specht, J. Nekarda, M. Retzlaff, A. Krieg, F. Clement, A. Wolf, D. Biro, and R. Preu, “20 % Efficient Passivated Large-Area Metal Wrap Through Solar Cells on Born-Doped Cz Silicon,” IEEE J. Photovoltaics, vol. 32, no. 12, pp. 1719-1721, Dec 2011.
[23] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto,“Achievement of More Than 25 % Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell,” IEEE J. Photovoltaics, vol. 4, no. 6, pp. 1433-1435, Nov 2014.
[24] F. Dross, B. O. Sullivan, M. Debucquoy, T. Bearda, J. Govaerts, R. Labie, X. Loozen, S. Granata, O. E. Daif, C. Trompoukis, K. V. Nieuwenhuysen, M. Meuris, I. Gordon, N. Posthuma, K. Baert, J. Poortmans, C. Boulord, and Guy Beaucarne, “18 % Efficiency IBC Cell With Rear-Surface Processed on Quartz,” IEEE J. Photovoltaics, vol. 3, no. 2, pp. 684-689, Apr 2013.
[25] A. Blakers, N. Zin, K. R. Mcintosh, and K. Fong, “High Efficiency Silicon Solar Cells,”Energy Procedia, vol. 33, pp. 1-10, 2013.
[26] J. Haschke, N. Mingirulli, R. Gogolin, R. Ferre, T. F. Schulze, J. Dusterhoft, N. P. Harder, and L. Korte, “Interdigitated Back-Contacted Silicon Heterojunction Solar Cells With Improved Fill Factor and Efficiency,” IEEE J. Photovoltaics, vol. 1, no. 2, pp. 130-134, Dec 2011.
[27] G. Galbiati, V. D. Mihailetchi, R. Roescu, A. Halm, L. J. Koduvelikulathu, R. Kopecek, K. Peter, and J. Libal, “Large-Area Back-Contact Back-Junction Solar Cell With Efficiency Exceeding 21 %,” IEEE J. Photovoltaics, vol. 3, no. 3, pp. 560-565, Jan 2013.
[28] C. Gong, E. V. Kerschaver, J. Rovvelein, T. Janssens, N. Posthuma, J. Poortmans, and R. Mertens, IEEE, “Screen-Printed Aluminum-Alloyed P+ Emitter on High-Efficiency N-Type Interdigitated Back-Contact Silicon Solar Cells,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 576–578, Jun 2010.
[29] J. H. Choi, J. C. Lee, S. K. Kim, H. Park, K. H. Kim and W. J. Lee, “Industrial Development of Silicon Hetero-junction Back Contact Solar Cells,” in Proc. 38th IEEE Photovoltaic Spec. Conf., 2012, pp. 1023-1025.
[30] H. M. Li, D. Y. Lee, and W. J. Yoo, IEEE, “Optoelectronic Performance of Radial-Junction Si Nanopillar and Nanohole Solar Cells,” IEEE Trans. Electron Devices, vol. 59, no. 9, pp. 2368-2374, Sep 2012.
[31] W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si:H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett.,vol. 99, pp. 033107, 2011.
[32] G. Jia, A. Gawlik, J. Bergmann, B. Eisenhawer, S. Schonherr, G. Andra, and F. Falk, “Silicon Nanowire Solar Cells With Radial p-n Heterojunction on Crystalline Silicon Thin Films: Light Trapping Properties,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 28-32, Jan 2014.
[33] X. Hua, Y. Zeng, W. Wang, and W. Shen, “Light Absorption Mechanism of c-Si/a-Si Half-Coaxial Nanowire Arrays for Nanostructured Heterojunction Photovoltaics,” IEEE Trans. Electron Devices, vol. 61, pp. 4007-4013, 2014.
[34] S. M. Wong, H. Y. Yu, Y. Li, J. Li, X. W. Sun, N. Singh, P. G. Q. Lo, and D. L. Kwong, IEEE, “Boosting Short-Circuit Current With Rationally Designed Periodic Si Nanopillar Surface Texturing for Solar Cells,” IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3224-3229, 2011.
[35] Z. Pei, S. T. Chang, C. W. Liu, and Y. C. Chen, “Numerical Simulation on the Photovoltaic Behavior of an Amorphous-Silicon Nanowire-Array Solar Cell,” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1365–1367, Dec. 2009.
[36] S. T. Chang, M. Tang, C. X. Huang, and C. W. Chang, “Tandem Thin Film Solar Cell with a Nanoplate Structure,” in Proc. 10th IEEE Nanotechnology Conf., 2010, pp. 316-319.
[37] B. Dou, R. Jia, H. Li, C. Chen, Z. Jin, X. Liu, and X. Xu, “Enhanced electrode-contact property of silicon nano-textured solar cells via selective etching,” Solar Energy, vol. 99, pp. 95-99, 2014.
[38] S. M. Wong, H. Y. Yu, Y. L. Li, J. S. Li, F. Wang, M. F. Yang, N. Singh, P. G. Q. Lo, and D. L. Kwong, “Boosting Short Circuit Current with Rationally Designed Periodic Si Nanopillar Surface Texturing for Thin Film Solar Cell,” in International Electron Devices Meeting(IEDM’10), pp. 31.1.2.1-31.2.4, 2010.
[39] K. Watanabe, M. Matsumura, T. Hattori, T. Qsabe, and Y. Shimamoto, “Buried PN Junction Nanopillar Solar Cell: A Novel Approach to Reduce Recombination Loss in Surface Nanostructure,” in Proc. 40th IEEE Photovoltaic Spec. Conf., 2014, pp. 2286-2288.
[40] H. H. Li, P. Y. Yang, S. M. Chiou, H. W. Liu, and H. C. Cheng, IEEE, “A Novel Coaxial-Structured Amorphous-Silicon p-i-n Solar Cell With Al-Doped ZnO Nanowires,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 928–930, July. 2011.
[41] J. Liu, X. Zhang, G. Dong, Y. Liao, B. Wang, T. Zhang, and F. Yi, “Fabrication of silicon nanopillar arrays by cesium chloride,” Appl. Surf. Sci., vol. 289, pp. 300-305, 2014.
[42] J. D. Hwang, and D. R. Hsieh, “A Surface-Plasmon-Enhanced Silicon Solar Cell With KOH-Etched Pyramid Structure,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 659–661, May. 2013.
[43] G. A. Hirata, T. Nishimoto, Y. Matsumoto, H. Okamoto, Y. Hamakawa, M. H. Farias, and L. C. Araiza, “The Role of an Amorphous SiC:H “Buffer” in the High-Performance µc-SiC:H/a-SiC:H/poly-Si Heterojunction Solar Cells,” IEEE Electron Device Lett., vol. 12, no. 10, pp. 562–564, Oct 1991.
[44] A. Catalano, J. Newton, and A. Rothwarf, IEEE, “a-Si1-xCx:H Alloys for Multijunction Solar Cells,” IEEE Trans. Electron Devices, vol. 37, no. 2, pp. 391-396,Feb 1990.
[45] H. Heidarzadeh, H. Baghban, H. Rasooli , M. Dolatyari, and A. Rostami, “A new proposal for Si tandem solar cell: Significant efficiency enhancement in 3C-SiC/Si,”International Journal for Light and Electron Optics, vol. 125, no. 3, pp. 1292-1296, 2014.
[46] D. Zhang, D. Deligiannis, G. Papakonstantinou, R. A. C. M. M. V. Swaaij, and M. Zeman, “Optical Enhancement of Silicon Heterojunction Solar Cells With Hydrogenated Amorphous Silicon Carbide Emitter,” IEEE J. Photovoltaics, vol. 4, no. 6, pp. 1326-1330, Nov 2014.
[47] A. Alnuaimi, V. Kumar, F. Chowdhury, and A. Nayfeh, “Effect of Carbon Diffusion on Performance of Thin Film c-Si HIT Solar Cells with a-SiC Passivation Layer,” in Proc. 40th IEEE Photovoltaic Spec. Conf., 2014, pp. 1197-1200.
[48] J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. D. Zhang, X. Geng, and Y. Zhao, “Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers,” Solar Energy Materials and Solar Cells, vol. 114, pp. 9-14, 2013.
[49] D. Hamashita, S. Miyajima, and M. Konagai, “Preparation of Al-doped hydrogenated nanocrystalline cubic silicon carbide by VHF-PECVD for heterojunction emitter of n-type crystalline silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 107, pp. 46-50, 2012.
[50] J. E. Lee, J. H. Park, J. S. Cho, J. W. Chung, J. Song, D. Kim, and J. C. Lee, “Analysis on the interfacial properties of transparent conducting oxide and hydrogenated p-type amorphous silicon carbide layers in p-i-n amorphous silicon thin film solar cell structure,”Thin Solid Films, vol. 520, pp. 6007-6011, 2012.
[51] D. Hamashita, Y. Kurokawa, and M. Konagai, “Preparation of p-type Hydrogenated Nanocrystalline Cubic Silicon Carbide / n-type Crystalline Silicon Heterojunction Solar Cells by VHF-PECVD,” Energy Procedia, vol. 10, pp. 14-19, 2011.
[52] T. Chen, Y. Huang, D. Yang, R. Carius, and F. Finger, “Development of microcrystalline silicon carbide window layers by hot-wire CVD and their applications in microcrystalline silicon thin film solar cells,” Thin Solid Films, vol. 519, pp. 4523-4526, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code