Responsive image
博碩士論文 etd-0704115-164349 詳細資訊
Title page for etd-0704115-164349
論文名稱
Title
三嵌段共聚物薄膜之結晶順序,結晶形態與結晶結構之研究
Crystallization Sequence, Crystalline Morphology and Crystalline Texture in Triblock Copolymer Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-08-04
關鍵字
Keywords
溶劑選擇性、壓縮繫鏈密度、侷限效應、結晶、三嵌段共聚物
confinement, reduced tethered chain density, solvent selectivity, crystallization, triblock copolymer
統計
Statistics
本論文已被瀏覽 5671 次,被下載 41
The thesis/dissertation has been browsed 5671 times, has been downloaded 41 times.
中文摘要
在本研究中,藉由熔融結晶與溶劑誘導結晶來研究具有多重結晶性的三嵌段共聚物PE-PEO-PLLA之結晶行為。在熔融結晶下,只能得到由最先形成結晶的嵌段所主導的單結晶形態,這是由於先形成的結晶會對未結晶嵌段產生侷限效應所導致。因PE的結晶區間與PEO有部分重複,而且PE結晶速度極快,此快速結晶的PE與玻璃化的PLLA所造成的侷限效應會抑制PEO的結晶形成,故無法觀察到PEO的結晶。而在溶劑誘導結晶中,將PE-PEO-PLLA薄膜暴露在不同溶劑蒸氣下,藉此可控制單結晶性與雙結晶性結晶形態的成長。因溶劑選擇性的差異,經n-butyl acetate與chlorobenzene溶劑退火後,薄膜之結晶形態會從PLLA的單結晶層板轉變為PE與PLLA之雙結晶層板;而結晶的PE會增加PE層板與PEO鏈之間的壓縮繫鏈密度,故在PE結晶形成後無法繼續得到PEO的結晶層板。相反地,在hexane與p-xylene蒸氣中,可在不同的退火時間下分別獲得PE、PEO與PLLA的單結晶層板。除了溶劑選擇性外,薄膜的初始形態亦會對結晶成長有所影響,與旋轉塗佈後直接進行溶劑退火的薄膜不同(初始形態為PLLA之結晶層板),以非晶態的薄膜用n-butyl acetate溶劑退火後,只能得到PLLA的結晶,由於初級成核的結果,PLLA的結晶成長速率有顯著地下降,更進一步導致PE成核密度的不足,而無法得到PE的結晶。最後,我們嘗試更改嵌段共聚物的順序性,比較PEO-PCL-PLLA與PEO-PLLA-PCL在薄膜下的結晶行為,證明嵌段共聚物的順序性會影響其結晶形態。
Abstract
The crystal growth of the multiple-crystalline polyethylene-block-poly(ethylene oxide)-block-poly(L-lactide) (PE-PEO-PLLA) triblock copolymer are investigated in thin film by melt and solvent-induced crystallizations. Only single-crystalline morphologies of the first-crystallized blocks can be obtained in melt-crystallized PE-PEO-PLLA thin films. This is due to the formation of a robust confined crystalline environment by the first-crystallized block for the subsequent crystallization. No observation of PEO crystallization is found in the present study due to confinement effect of the fast growth PE crystals and vitrified PLLA. Most interestingly, single- and double-crystalline morphologies can be observed in the PE-PEO-PLLA thin films by solvent-induced crystallization. After solvent annealing by n-butyl acetate and chlorobenzene, the development of crystalline morphologies from single to double crystallization in sequence, that is PLLA → PE, is carried out due to solvent selectivity. The non-crystalline PEO block is attributed to the high reduced tethered chain density. By contrast, single crystallization of PE, PEO or PLLA, is found after fuming by p-xylene and hexane vapor. Notably, the PEO single crystal can be acquired in the hexane vapor due to the reduction of the reduced tethered chain density. In addition, the initial morphology effect on the crystal growth is explored in the PE-PEO-PLLA thin film. In contrast to the crystal growth initiated from as-spun PLLA crystals, the amorphous thin film still displays the first-crystallized PLLA single crystals in the presence of n-butyl acetate vapor. The depression of the PLLA growth rate results from the primary nucleation, and the non-crystalline PE is attributed to low nucleation density for the crystal growth initiated from the amorphous state. Moreover, a PEO-PLLA-PCL triblock copolymer is synthesized to compare with the previous PEO-PCL-PLLA, providing the information about the sequence effect on the crystallization of triple-crystalline triblock copolymers.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
Table of Contents v
List of Tables viii
Figure Captions ix
Chapter 1. Introduction 1
1.1 Self-assembly 1
1.2 Self-assembly of Block Copolymers 3
1.3 Crystalline Diblock Copolymers 5
1.3.1 Microphase-Separated Morphology of Semi-crystalline BCPs 5
1.3.2 Double Crystalline BCPs 10
1.4 Polymer Single Crystal 11
1.4.1 Single Crystals from Self-assembly of Homopolymers 11
1.4.2 Single Crystals from Self-assembly of Block Copolymers 18
1.5 Reduced Tethered Density 23
Chapter 2. Objectives 25
Chapter 3. Materials and Experimental Methods 27
3.1 Materials 27
3.1.1 Synthesis of PE-PEO-PLLA 27
3.1.2 Synthesis of PEO-PLLA-PCL 28
3.1.3 Sample Preparation 30
3.1.3.1 Bulk Samples Prepared by Solution Casting 30
3.1.3.2 Thin Films Prepared by Spin Coating 30
3.2 Characterization of Multiple-Crystalline Block Copolymers 31
3.2.1 Differential Scanning Calorimetry (DSC) 31
3.2.2 Wide-Angle X-ray Diffration (WAXD) 32
3.2.3 Transmission Electron Microscopy (TEM) 32
3.2.4 Grazing Incidence Wide-Angle X-ray Diffraction (GIWAXD) 33
Chapter 4. Results and Discussion 34
4.1 Crystallization Behaviors of PE-PEO and PE-PEO-PLLA 34
4.1.1 Crystallization Sequence 34
4.1.2 Isothermal Crystallization 38
4.2 Melt-Crystallized Morphology in Thin Film 40
4.2.1 Double crystalline PE-PEO Thin Film 40
4.2.2 Thin Film Crystallization of PE-PEO-PLLA 44
4.3 Solvent-Induced Crystallization of PE-PEO-PLLA 51
4.3.1 As-spun Thin Film Morphologies 52
4.3.2 Self- Assembled Morphologies after Hexane Annealing 54
4.3.3 Self- Assembled Morphologies after n-Butyl Acetate Annealing 58
4.3.4 Self- Assembled Morphologies after p-Xylene Annealing 60
4.3.5 Self- Assembled Morphologies after Chlorobenzene Annealing 61
4.3.6 Grazing Incidence Wide Angle X-Ray Diffraction (GIWAXD) 64
4.3.7 Initial Morphology Effect in Crystal Growth 67
4.4 Effect of Constituent Sequence on Crystal Growth 70
4.4.1 Characterization of a PEO-PLLA-PCL Triblock Copolymer 70
4.4.2 Solvent-Induced Crystallization of the PEO-PLLA-PCL 71
Chapter 5. Conclusions 75
Chapter 6. References 77
參考文獻 References
1. Prockop, D. J.; Fertala, A. The Collagen Fibril: the Almost Crystalline Structure. J. Struct. Biol. 1998, 122, 111-118.
2. Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418-2421.
3. Philip, D.; Stoddart, J. F. Self-Assembly in Natural and Unnatural Systems. Angew. Chem. Int. Ed. 1996, 35, 1154-1196.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Spatiotemporal Concentration Patterns in a Surface Reaction: Propagating and Standing Waves, Rotating Spirals, and Turbulence. Phys. Rev. Lett. 1990, 65, 3013-3016.
5. Whitesides, G. M.; Ismagilov, R. F. Complexity in Chemistry. Science 1999, 284, 89-92.
6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. Self-Assembly of 10-μm-Sized Objects into Ordered Three-Dimensional Arrays. J. Am. Chem. Soc. 2001, 123, 7677-7682.
7. Bates, F. S.; Fredrickson, G. H. Block Copolymers-Designer Soft Materials. Phys. Today 1999, 52, 32-38.
8. Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641-7644.
9. Loo, Y. L.; Register, R. A.; Ryan, A. J. Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined. Macromolecules 2002, 35, 2365-2374.
10. Ho, R. M.; Lin, F. H.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Hsiao, B. S.; Sics, I. Crystallization-Induced Undulated Morphology in Polystyrene-b-poly(L-lactide) Block Copolymer. Macromolecules 2004, 37, 5985-5994.
11. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L,; Hsiao, B. S.; Yeh, F.; Lotz, B. Crystallization Temperature-Dependent Crystal Orientations within Nanoscale Confined Lamellae of a Self-Assembled Crystalline-Amorphous Diblock Copolymer. J. Am. Chem. Soc. 2000, 122, 5957-5967.
12. Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. T.; Jeng, U. S.; Lotz, B. Crystalline Polymers in Nanoscale 1D Spatial Confinement. Macromolecules 2006 39, 5782-5788.
13. Hamley, W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, Ph. Crystallization in Poly(L-lactide)-b-poly(ε-caprolactone) Double crystalline Diblock Copolymers:  A Study Using X-Ray Scattering, Differential Scanning Calorimetry, and Polarized Optical Microscopy. Macromolecules 2005, 38, 463-472.
14. Castillo, R. V.; Müller, A. J; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Hillmyer, M. A. Confined Crystallization and Morphology of Melt Segregated PLLA-b-PE and PLDA-b-PE Diblock Copolymers. Macromolecules 2008, 41, 6154-6164.
15. Jacodine, R. Observations of Spiral Growth Steps in Ethylene Polymer. Nature 1955, 176, 305-306.
16. Keller, A. A Note on Single Crystals in Polymers: Evidence for a Folded Chain Configuration. Philos. Mag. 1957, 2, 1171-1175.
17. Bassett, D. C.; Olley, R. H.; Al Raheil I. A. M. On Isolated Lamellae of Melt-Crystallized Polyethylene. Polymer 1988, 29, 1539-1543.
18. Lotz, B.; Wittmann, J.C. Structure of Polymer Single Crystals. Mater Sci Tech Ser, 1993, 12, 79-151.
19. Hocquet, S.; Dosière, M.; Thierry, A.; Lotz, B.; Koch, M. H. J.; Dubreuil, N.; Ivanov, D. A. Morphology and Melting of Truncated Single Crystals of Linear Polyethylene. Macromolecules 2003, 36, 8376-8384.
20. Reneker, D. H.; Geil, P. H. Morphology of Polymer Single Crystals. J. Appl. Phys. 1960, 31, 1916-1925.
21. McMahon, P. E.; McCullough, R. L.; Schlegel, A. A. Molecular Mechanics of Point Defects In Polyethylene. J. Appl. Phys. 1967, 38, 4123-4139.
22. Oyama, T.; Shiokawa, K.; Ishimaru, T. J Chain Conformations on the Surface of Polyethylene Single Crystals. J. Macromol. Sci., Phys. 1973, 8, 229-239.
23. Baltá Calleja, F.J.; Keller, A. On the Relation between Long Spacings, Molecular Length, and Orientation in Long Chain Compounds with Reference to the Possibility of Chain Folding. Part II. Poly(ethylene oxide)s. J. Polym. Sci. A 1964, 2, 2171-2179.
24. Yang, J. P.; Liao, Q.; Zhou, J. J.; Jiang, X.; Wang, X. H.; Zhang, Y.; Jiang, S. D.; Li, L. What Determines the Lamellar Orientation on Substrates? Macromolecules 2011, 44, 3511-3516.
25. Zhai, X.; Wang, W.; Zhang, G.; He, B. Crystal Pattern Formation and Transitions of PEO Monolayers on Solid Substrates from Nonequilibrium to Near Equilibrium. Macromolecules 2006, 39, 324-329.
26. Kuroda, T. Crystals are Living; Sa-I-en-su Sha: Tokyo, 1984.
27. Reiter, G.; Sommer, J.-U. Crystallization of Adsorbed Polymer Monolayers Phys. Rev. Lett. 1998, 80, 3771-3774.
28. Bittiger, H.; Marchessault R. H.; Niegisch W. D. Crystal Structure of Poly-ε-caprolactone. Acta Cryst. 1970. B26, 1923-1927.
29. Iwata, T.; Doi, Y. Morphology and Enzymatic Degradation of Poly(ε-caprolactone) Single Crystals: Does a Polymer Single Crystal Consist of Micro-Crystals? Polym Int 2002, 51, 852.
30. Iwata, T.; Doi, Y. Morphology and Enzymatic Degradation of Poly(L-lactic acid) Single Crystals. Macromolecules, 1998, 31 , 2461–2467.
31. Cartier, L.; Okihara, T.; Lotz, B. Triangular Polymer Single Crystals:  Stereocomplexes, Twins, and Frustrated Structures. Macromolecules 1997, 30, 6313-6322.
32. Chen, W. Y.; Li, C.Y.; Zheng, J. X.; Huang, P.; Zhu L.; Ge, Q.; Quirk, R. P.; Lotz, B.; Deng L.; Wu, C.; Thomas, E. L.; Cheng, S. Z. D. “Chemically Shielded” Poly(ethylene oxide) Single Crystal Growth and Construction of Channel-Wire Arrays With Chemical and Geometric Recognitions on a Submicrometer Scale Macromolecules 2004, 37, 5292-5299.
33. Chen, W. Y.; Zheng, J. X.; Cheng, S.Z.D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H.; Ge, Q.; Geo, Y.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L. Onset of Tethered Chain Overcrowding. Phys. Rev. Lett. 2004, 93, 028301.
34. Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A. C.; Cheng, S. Z. D. Onsets of Tethered Chain Overcrowding and Highly Stretched Brush Regime via Crystalline-Amorphous Diblock Copolymers. Macromolecules 2006, 39, 641-650.
35. Yang, J.; Zhao, T.; Zhou, Y.; Liu, L.; Li, G.; Zhou, E.; Chen X. Single Crystals of the Poly(L-lactide) Block and the Poly(ethylene glycol) Block in Poly(L-lactide)-poly(ethylene glycol) Diblock Copolymer. Macromolecules 2007, 40, 2791-2797.
36. Sun, J.; Chen, X.; He, C.; Jing, X. Morphology and Structure of Single Crystals of Poly(ethylene glycol)-poly(ε-caprolactone) Diblock Copolymers. Macromolecules 2006, 39, 3717-3719.
37. Van Horn, R. M.; Zheng, J. X.; Sun, H. J.; Hsiao, M. S.; Zhang, W. B.; Dong, X. H.; Xu, J.; Thomas, E. L.; Lotz, B.; Cheng, S. Z. D. Solution Crystallization Behavior of Crystalline-Crystalline Diblock Copolymers of Poly(ethylene oxide)-block-poly(ε-caprolactone). Macromolecules 2010, 43, 6113-6119.
38. Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, 4th ed. 1999 Wiley-Interscience, New York.
39. Takahashi, Y.; Tadokoro, H. Structural Studies of Polyethers, (-(CH2)m-O-)n. X. Crystal Structure of Poly(ethylene oxide). Macromolecules 1973, 6, 672-675.
40. Hoogsteen, A.; Postema, A. R.; Pennings, A. J.; Brinke, G. T; Zugenmaier, P. Crystal Structure, Conformation and Morphology of Solution-Spun Poly(L-lactide) Fibers. Macromolecules 1990, 23, 634-642.
41. Barton, A. F. M. Solubility Parameters. Chem. Rev. 1975, 75, 731-753.
42. Hay, J. N.; Fitzgerald, P. A. Chain Folding in Melt Crystallized Polyethylene: 2. Low Molecular Weight Polymers. Polymer 1981, 22, 1003-1005.
43. Allen, G.; Charlesby, A.; Tabor, D.; Welding, G. N. The Molecular Basis of Rubber Elasticity [and Discussion]. Pro. R. Soc. Lond., Ser. A 1976, 351, 381-396.
44. Castillo, R. V.; Müller, A. J. Crystallization and Morphology of Biodegradable or Biostable Single and Double Crystalline Block Copolymers. Prog. Polym. Sci. 2009, 34, 516-560.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code