Responsive image
博碩士論文 etd-0704116-001835 詳細資訊
Title page for etd-0704116-001835
論文名稱
Title
氨氣電漿處理對具多晶矽通道之穿隧場效電晶體影響之研究
Impacts of Ammonia Plasma Treatment on Tunnel-FET With Poly-Si Channel Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-15
繳交日期
Date of Submission
2016-08-04
關鍵字
Keywords
可靠度、表面電漿處理、短通道效應、多晶矽材料、穿隧式場效電晶體、薄膜電晶體
Tunnel-FET, Thin-film Transistor, Reliability, Short Channel Effect, Surface Plasma Treatment, Polycrystalline Silicon
統計
Statistics
本論文已被瀏覽 5696 次,被下載 986
The thesis/dissertation has been browsed 5696 times, has been downloaded 986 times.
中文摘要
為了追求元件更快之操作速度以及降低製程成本,電晶體的通道長度也隨著時代演進而不段的進行微縮,為了抑制無可避免且越趨嚴重的短通道效應,諸多先進製程被運用在元件製程技術上,如應力矽技術、多閘極結構以及口袋佈植等技術,但仍被無法抑制之漏電流以及次臨界擺幅無法低於60mV/dec之問題所困擾。利用能帶間穿隧來當作傳導機制的穿隧式電晶體被提出,穿隧式場效電晶體利用與傳統反轉式截然不同之機制,可達到低於60mV/dec之次臨界擺幅以及利用接面間的高能障來抑制漏電流,亦可以在通道微縮時擁有較好之短通道效應免疫力,成為了下一個世代低功率元件之熱門候選人之一。
本論文對具多晶矽通道之穿隧式電晶體進行研究,多晶矽通道內之晶粒邊界上含有大量缺陷,缺陷中帶有大量懸浮鍵以及應力鍵,使得元件在操作時特性受到劣化,其中包括漏電流上升、開啟電流不夠大和次臨界擺幅不夠陡峭等等,本論文提出以氨氣電漿處理來鈍化晶粒邊界內的陷阱電荷,藉由降低晶粒邊界陷阱能態以及界面陷阱能態來提升元件性能。經實際量測後經表面電漿處理之元件在室溫情況下無論是在開啟電流、最小電流、次臨界擺幅和臨界電壓的都能比未經表面電漿處理之元件展現更好之特性,在通道微縮的情況下也依然擁有極佳之短通道效應免疫力。在可靠度方面,經表面電漿處理後之元件在經正偏壓應力1000秒後仍展現比對照組更好之可靠度。經氨氣表面電漿處理使得多晶矽穿隧式場效電晶體在各方面展現出更出色的特性並使其在電子產品上的運用更加廣泛以及達到更高的效能。
Abstract
To obtain the faster operation speed and lower cost in fabrication,Channel length is continuously scaling down. However, negligible short channel effect(SCE) are observed and lead to increased of leakage current and reduce gate control ability. Tunnel Field-effect transistor is proposed to replace MOSFET in future. Unlike traditional inversion mode transistors, band-to-band tunneling is the mainly carrier transport mechanism. The subthreshold swing(S.S.) of T-FET can overcome the limitation of 60mV/dec of MOSFET.T-FET can also suppressed the leakage current by the high energy barrier and perform a better SCE immunity. T-FET is considered a promising candidate for next generation low power applications.
This thesis is mainly study for T-FET with Polycrystalline-Si channel, the channel film and the surface oxide interface of channel are rich with defects, lots of dangling bonds and strain bonds are localize in the defect. Both of them would degrade S.S. and increase leakage current. In this thesis,NH3 plasma is used to passivate the trap state. Both grain boundary trap state and interface trap can be effectively reduce by NH3 surface plasma treatment. Significant performance improvement has been observed after NH3 plasma surface treatment. Moreover, T-FET which passivated by NH3 plasma show lower
degradation after positive bias stress for 1000 sec, it indicate that TFET can perform higher reliability by NH3 plasma surface treatment. As a result, Poly-Si T-FET with NH3 plasma surface treatment can obtain better propertied and suitable to be used in LCD, three Dimensional-integrated Circuit or other consumer electronic.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iv
Abstract v
目 錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1前言: 1
1.2薄膜電晶體(Thin-film Transistors,TFT) 2
1.3短通道效應(Short Channel Effect) 2
1.3.1汲極引致能障降低(Drain-induced Barrier Lowering,DIBL) 3
1.3.2穿透崩潰(Punch Through) 3
1.4多晶矽和非晶矽 3
1.4.1晶粒邊界(Grain Boundary) 4
1.4.2表面電漿處理(Surface Plasma Treatment) 5
1.5多晶矽薄膜電晶體之可靠度機制 5
1.5.1正偏壓應力(Positive Bias Stress,PBS) 5
1.5.2負偏壓應力(Negative Bias Stress,NBS) 6
1.5.3熱載子效應(Hot Carrier Effect) 6
1.6穿隧式場效電晶體(Tunnel Field-effect Transistor,T-FET) 6
1.6.1穿隧式場效電晶體載子傳輸機制 7
1.6.2 Shockly-Read-Hall產生與復合 7
1.6.3陷阱輔助穿隧(Trap-assisted Tunneling) 8
1.6.4能帶至能帶穿隧(Band-to-band Tunneling,BTBT) 8
1.6.5多晶矽穿隧式場效電晶體 9
1.7研究動機 10
第二章 實驗步驟與流程 19
2.1元件製作 19
2.2電性參數萃取 20
2.2.1臨界電壓(Threshold Voltage) 20
2.2.2次臨界擺幅(Subthreshold Swing) 20
2.2.3開啟電流和最小電流(On-state Current & Minimum Current) 21
2.2.4晶粒邊界陷阱能態(Grain Boundary Trap State) 21
2.2.5界面陷阱能態(Interface Trap State) 22
第三章 結果與討論 30
3-1常態量測 30
3-2可靠度分析 32
第四章 總結與未來展望 43
參考文獻 44
參考文獻 References
[1] A. S. Verhulst, D. Verreck, Q. Smets , K.-H. Kao, M. V. D. Put, R. Rooyackers, B. Soree, A. Vandooren, K. D. Meyer,.G. Groeseneken, M. M. heyns, A. Mocuta, N. Collaert and A. V.-Y. Thean, “Perspective of tunnel-FET for future low-power technology nodes. ” IEDM 2014, technical digest; 2015. p. 30.2.1–4 [article number 7047140].
[2] G. A. Bhat, Z. Jin, H. S. Kwok, and W. Man, “Effects of longitudinal grain boundaries on the performance of MILC-TFTs,” IEEE Electron Device Letters, vol. 20, no. 2. pp. 97-99, Feb .1999.
[3] C.-L. Fan , M.-C. Chen and Y. Chang, “A novel two-step annealing technique for the
fabrication of high performance low temperature poly-Si TFTs ”, J. Electrochem. Soc., vol. 150, no. 8, pp. H178-H181, 2003
[4] Sze, S. M. “Physics of Semiconductor Devices, ” 1st edn (John Wiley, 1969).
[5] J.Y. Seto, “The electrical properties of polycrystalline silicon films. ” Journal of Applied Physics, 46(12): p. 5247-5254, 1975.
[6] G. Baccarani, B. Ricco, and G. Spadini, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., vol. 49, pp. 5565- 5570. 1978.
[7] H. Xiao, “ Introduction to Semiconductor Manufacturing Technology, ”1st edn(Prentice-Hal, 2001)
[8] I. W. Wu, T.-Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation, ”IEEE Electron Device Letters, vol. 12, no. 4,pp. 181-183, April. 1991.
[9] C. K. Yang, T. F. Lei, and C. L. Lee, “Improved electrical characteristics of thin-film
transistors fabricated on nitrogen-implanted polysilicon films,” in IEDM Tech. Dig., 1994, pp. 505–508.
[10] H. N. Chern, C. L. Lee, and T. F. Lei, “The effects of H2–O2-plasma treatment on the characteristics of polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 2301–2306, Mar. 1993.
[11] H.-C. Cheng, F.-S. Wang, and C.-Y. Huang, “Effects of NH3 plasma passivation on N-channel polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol.
44, no. 1, pp. 64–68, Jan. 1997.
[12] W.C.-Y. Ma, S.-W. Yuan, T.-C. Chan, and C.-Y. Huang, “Threshold voltage reduction and mobility improvement of LTPS-TFTs with NH3 plasma treatment, ” IEEE Trans. Plasma Sci.,vol 42, no. 12, pp. 3722-3725, Dec. 2014
[13] M.-W. Ma, C.-Y. Chen, W.-C. Wu, C.-J. Su, K.-H. Kao, T.-S. Chao, and T.-F. Lei, “Reliability mechanisms of LTPS-TFT with HfO2 gate dielectric: PBTI, NBTI, and hot-carrier stress,” IEEE Trans. Electron Devices, vol. 55, no. 5, pp. 1153–1160, May. 2008.
[14] M.-W. Ma , C.-Y. Chen , C.-J. Su , W.-C. Wu , Y.-H. Wu , K.-H. Kao , T.-S. Chao, and T.-F. Lei,, “Characteristics of PBTI and hot carrier stress for LTPS-TFT with high- gate dielectric,” IEEE Electron Device Lett., vol. 29, no. 2, pp. 171–173, Feb.
2008.
[15] A. Vandooren, A. M. Walke, A. S. Verhulst, R. Rooyackers, N. Collaert, and A.V. Y. Thean, “Investigation of the subthreshold swing in vertical tunnel-FETs using H2 and D2 anneals,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 359–364, Feb. 2014.
[16] J. Knoch, "Optimizing tunnel FET performance—Impact of device structure, transistor dimensions and choice of material", Proc. IEEE Symp. VLSI Technol., pp. 45-46, April. 2009.
[17] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic, ” Proc. IEEE, vol. 98, no. 12, pp. 2095-2110, Oct. 2010.
[18] K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-k gate dielectric,”IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1725–1733, Jul. 2007.
[19] C. P. Lin, B. Y. Tsui, M. J. Yang, R. H. Huang, and C. H. Chien, “High-performance poly-silicon TFTs using HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 360–363, May, 2006.
[20] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches”, Nature, vol. 479, pp. 329-337, Nov. 2011.
[21] Y.-R. Jhan, Y.-C. Wu, Y.-L. Wang, Y.-J. Lee, M.-F. Hung, H.-Y. Lin, Y.-H. Chen, and M.-S. Yeh,“Low-temperature microwave annealing for tunnel field-effect transistor,” IEEE Electron Device Lett., vol. 36, no. 2, pp. 105–107, Feb. 2015.
[22] K. Boucart and A. M. Ionescu, “Length scaling of the double gate tunnel FET with a high-k gate dielectric,” Solid State Electron., vol. 51, no. 11/12, pp. 1500-1507, Nov-Dec. 2007.
[23] M.-H. Juang, P.-S. Hu, and S. L. Jang, “Formation of polycrystalline-Si thin-film transistors with tunneling field-effect-transistor structure,” Thin Solid Films, vol. 518, no. 14, pp. 3978–3981, May. 2010.
[24] Y.-H. Chen, W.C.-Y. Ma, J.-Y. Lin, C.-Y. Lin, P.-Y. Hsu, C.-Y. Huang, T.-S. Chao, “ Impact of crystallization method on poly-Si tunnel FETs, ” IEEE Electron Device Lett, vol. 36, pp. 1060 - 1062, Oct. 2015.
[25] W.C.-Y. Ma and Y.-H. Chen, “Performance Improvement of Poly-Si Tunnel FETs by Trap Density Reduction, ” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 864–868, FEB. 2013.
[26] J. Levinson , F. R. Shepherd , P. J. Scanlon , W. D. Westwood , G. Este and M. Rider, "Conductivity behavior in polycrystalline semiconductor thin film transistors", J.Appl. Phys, vol. 53, no. 2, pp. 1193-1202, 1982.
[27] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1915–1922, Sept. 1989.
[28] L. Ding, E. Gnani, S. Gerardin, M. Bagatin, F. Driussi, P. Palestri, L. Selmi, C-L. Royer and A. Paccagnella, “Investigation of Hot Carrier Stress and Constant Voltage Stress in High-Si-Based TFETs” , IEEE Transactions on Device and Materials Reliability, vol. 15, no.2, pp. 236-241, June. 2015
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code