Responsive image
博碩士論文 etd-0704116-111522 詳細資訊
Title page for etd-0704116-111522
論文名稱
Title
聚多巴胺合成金屬-半導體材料及表面增強拉曼散射之應用
Fabrication of metal-semiconductor materials by polydopamine and its application in SERS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-04
繳交日期
Date of Submission
2016-08-04
關鍵字
Keywords
還原劑、表面增強拉曼光譜、聚多巴胺、銀奈米粒子、氧化鋅
zinc oxide, reductant, polydopamine, silver nanoparticles, Surface-Enhanced Raman Spectroscopy
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
表面增強拉曼光譜 ( SERS )由於高靈敏度、高解析度及對於吸附物的高選擇性,廣泛應用在生物、醫藥、化學等領域。近年來有許多研究,透過合成金屬結合半導體的材料,能大幅提升SERS增強活性。本實驗中我們利用聚多巴胺對環境友善、良好吸附性與還原劑的優點,製備金屬結合半導體的銀/聚多巴胺/氧化鋅材料,並應用SERS發現其增強效果能有效提升,適合作為SERS基材。由掃描式電子顯微鏡 ( SEM )觀察到材料的形貌為棒狀堆疊的結構。利用X光繞射分析儀( XRD )、能量分散光譜儀 ( EDS )與感應耦合電漿質譜儀 ( ICP-MS )對材料作定性與定量分析。從X光光電子光譜儀( XPS )的結果中,我們可以驗證銀奈米粒子與氧化鋅間的電荷轉移趨勢,藉以解釋SERS效應增強的原因。藉由調整銀奈米粒子沉積時間,並利用SERS測定羅丹明B的偵測極限與監測光催化降解反應,測得銀奈米粒子沉積時間的最佳條件為8小時,光降解反應為一級反應。藉由材料兼具SERS的高靈敏度與反應的催化活性,我們對最佳條件的基材作重複5次實驗,發現仍能維持相當的催化活性,適合作為可回收的感測材料,對於應用有機染料的追蹤感測與催化劑製備的SERS基材有良好前景。
Abstract
Surface-Enhanced Raman Spectroscopy ( SERS ) has broad applications in the fields of biology, medicine and chemistry due to high sensitivity, high resolution and high selectivity to the adsorbate. In recent years, it was reported that materials combining metal and semiconductor can greatly increase the SERS enhancement effect. In this experiment, we synthesized Ag/PDA/ZnO@GMF which combined metal and semiconductor using polydopamine, and had the benefits of being environmentally friendly, exhibiting good adsorption, and being a strong reductant. We applied the material to SERS and found that the SERS enhancement effect increased significantly, making it an attractive SERS substrate. We observed that the material exhibited the rod-stacking structure by SEM. We performed qualitative and quantitative analysis of the material by XRD, EDS and ICP-MS. From the results of XPS, we observed the charge transfer effect between the silver nanoparticles and zinc oxide, which explains the increased SERS enhancement effect. By tuning the deposition time of the silver nanoparticles, we tested the detection limit of Rhodamine B and monitored the photocatalytic degradation. We found that the best condition of deposition time was 8hr, and the photocatalytic degradation was first-order reaction. Because the material possessed both high sensitivity of SERS and catalytic activity of reaction, we repeated the experiment in five times on the substrate of best condition. We found that the substrate could maintain considerable catalytic activity, appropriate for serving as recyclable sensing material. It would have good prospect to apply to the trace sensing of organic pollutants and fabricating the SERS substrate which could be the catalyst.
目次 Table of Contents
摘要.................................................................................................................................i
Abstract..........................................................................................................................ii
目錄...............................................................................................................................iii
圖次...............................................................................................................................vi
表次...............................................................................................................................x
第一章 緒論..................................................................................................................1
1-1拉曼散射 ( Raman Scattering ) ............................................................................1
1-1-1簡介...................................................................................................................1
1-1-2拉曼散射機制...................................................................................................1
1-1-3拉曼散射理論...................................................................................................4
1-2表面增強拉曼散射 ( Surface Enhanced Raman Scattering, SERS ) ..................6
1-2-1 簡介.................................................................................................................6
1-2-2 電磁場增強效應 ( electromagnetic field enhancement ) ..............................6
1-2-3 化學增強效應 ( chemical enhancement effect ) ...........................................8
1-3 多巴胺介紹.........................................................................................................10
1-3-1 簡介...............................................................................................................10
1-3-2 聚多巴胺製備及聚合機制...........................................................................11
1-4 玻璃纖維濾紙介紹.............................................................................................16
1-5 羅丹明B介紹.....................................................................................................16
1-6 研究動機.............................................................................................................17
第二章 儀器原理........................................................................................................19
2-1 掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) .........................19
2-1-1 掃描式電子顯微鏡.......................................................................................19
2-1-2 原理...............................................................................................................19
2-1-3 使用儀器與設定參數...................................................................................20
2-2 X光繞射分析儀 ( X-ray diffraction, XRD ) ....................................................20
2-2-1 X光繞射分析................................................................................................20
2-2-2 原理...............................................................................................................21
2-2-3 使用儀器與設定參數...................................................................................22
2-3 X光光電子光譜 ( X-ray photoelectron spectroscopy, XPS ) ...........................22
2-3-1 X光光電子光譜.............................................................................................22
2-3-2 原理...............................................................................................................22
2-3-3 使用儀器與設定參數...................................................................................24
2-4 感應耦合電漿質譜儀 ( Inductively coupled plasma mass spectrometry,
ICP-MS ) ...........................................................................................................24
2-4-1 感應耦合電漿質譜儀...................................................................................24
2-4-2 原理...............................................................................................................25
2-4-3 使用儀器與設定參數...................................................................................26
2-5 拉曼光譜儀 ( Raman Spectrometer ) ...............................................................27
2-5-1 原理...............................................................................................................27
2-5-2 使用儀器與設定參數...................................................................................27
第三章 合成銀/聚多巴胺/氧化鋅材料並應用表面增強拉曼散射感測羅丹明B...28
3-1 前言.....................................................................................................................28
3-2 實驗部分.............................................................................................................29
3-2-1 實驗藥品.......................................................................................................29
3-2-2 實驗基板.......................................................................................................29
3-2-3實驗流程........................................................................................................30
3-2-3-1 氧化鋅基材 ( ZnO@GMF )之樣品製備................................................30
3-2-3-2 聚多巴胺還原銀於氧化鋅基材 ( Ag/PDA/ZnO@GMF )之樣品製備...
..................................................................................................................30
3-2-3-3 聚多巴胺還原銀奈米粒子在玻璃纖維濾紙 ( Ag/PDA@GMF )之樣品
製備..........................................................................................................31
3-2-3-4表面增強拉曼光譜作偵測極限測試.......................................................31
3-2-3-5表面增強拉曼光譜監測羅丹明B的反應變化........................................32
3-2-3-6 ICP-MS樣品製備.....................................................................................33
3-3 結果與討論.........................................................................................................34
3-3-1 氧化鋅基材的結構鑑定...............................................................................34
3-3-2 聚多巴胺還原銀於氧化鋅基材...............................................................37
3-3-3 表面增強拉曼散射實驗...............................................................................46
3-3-4 偵測極限測試...............................................................................................51
3-3-5 光催化降解反應...........................................................................................59
3-4 結論.....................................................................................................................78
第四章 結論................................................................................................................78
第五章 未來展望........................................................................................................79
參考文獻......................................................................................................................80
參考文獻 References
1. Smekal, A., Naturwissenschaften 1923, 11 (43), 873-875.
2. Raman, C. V.; Krishnan, K. S., Nature 1928, 121 (3048), 501-502.
3. McCreery, R. L., Magnitude of Raman Scattering. In Raman Spectroscopy for Chemical Analysis, John Wiley & Sons, Inc.: 2005; pp 15-33.
4. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Chemical Physics Letters 1974, 26 (2), 163-166.
5. Jeanmaire, D. L.; Van Duyne, R. P., Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
6. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Duyne, R. P. V., Annual Review of Analytical Chemistry 2008, 1 (1), 601-626.
7. Campion, A.; Kambhampati, P., Chemical Society Reviews 1998, 27 (4), 241-250.
8. Brolo, A. G.; Irish, D. E.; Smith, B. D., J. Mol. Struct. 1997, 405 (1), 29-44.
9. Wang, X.; Jin, B.; Lin, X., Analytical Sciences 2002, 18 (8), 931-933.
10. Gidanian, S.; Farmer, P. J., Journal of Inorganic Biochemistry 2002, 89 (1–2), 54-60.
11. Van der Leeden, M. C., Langmuir 2005, 21 (24), 11373-11379.
12. Wang, K.; Luo, Y., Biomacromolecules 2013, 14 (7), 2373-2382.
13. Zhu, L.; Lu, Y.; Wang, Y.; Zhang, L.; Wang, W., Applied Surface Science 2012, 258 (14), 5387-5393.
14. Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J., Langmuir 2013, 29 (27), 8619-8628.
15. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Langmuir 2012, 28 (15), 6428-6435.
16. Liu, Y.; Ai, K.; Lu, L., Chem. Rev. 2014, 114 (9), 5057-5115.
17. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H., Advanced Functional Materials 2012, 22 (22), 4711-4717.
18. Della Vecchia, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M., Advanced Functional Materials 2013, 23 (10), 1331-1340.
19. Li, H.; Cui, D.; Cai, H.; Zhang, L.; Chen, X.; Sun, J.; Chao, Y., Biosensors and Bioelectronics 2013, 41, 809-814.
20. Zhang, Y.; Thingholm, B.; Goldie, K. N.; Ogaki, R.; Städler, B., Langmuir 2012, 28 (51), 17585-17592.
21. Dalsin, J. L.; Messersmith, P. B., Materials Today 2005, 8 (9), 38-46.
22. Yang, J.; Shi, G.; Bei, J.; Wang, S.; Cao, Y.; Shang, Q.; Yang, G.; Wang, W., Journal of Biomedical Materials Research 2002, 62 (3), 438-446.
23. Lim, Y.; Chua, C. S.; Lee, C. J. J; Chi, D., Phys.Chem.Chem.Phys.
2014, 16 (47), 25928- 25934.
24. Shaabani, B.; Alizadeh-Gheshlaghi, E.; Azizian-Kalandaragh, Y.; Khodayari, A., Advanced Powder Technology 2014, 25 (3), 1043-1052.
25. Vernon-Parry, K. D., III-Vs Review 2000, 13 (4), 40-44.
26. Todokoro, H.; Otaka, T., Scanning Electron Microscope: 1995.
27. Williams, T. J., Scanning 2005, 27 (4), 215-216.
28. Warren, B. E., X-Ray Diffraction: 2012.
29. Tripathy, S. K., Determination Of Inter-Planar Spacing Of Nacl Crystal In Presence Of Benzene Micro-Layer By X-Ray Diffraction Method: 2011.
30. Hollander, J. M.; Jolly, W. L., Accounts of Chemical Research 1970, 3 (6), 193-200.
31. Watts, J. F., Vacuum 1994, 45 (6), 653-671.
32. Castle, J. E., Surface and Interface Analysis 1984, 6 (6), 302-302.
33. Lee, W. H.; Kim, S. J.; Lee, W. J.; Lee, J. G.; Haddon, R. C.; Reucroft, P. J., Applied Surface Science 2001, 181 (1–2), 121-127.
34. Houk, R. S.; Thompson, J. J., Mass Spectrometry Reviews 1988, 7 (4), 425-461.
35. Rehkämper, M.; Schönbächler, M.; Stirling, C. H., Geostandards Newsletter 2001, 25 (1), 23-40.
36. Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A., Journal of Mass Spectrometry 2001, 36 (8), 849-865.
37. Maher, R. C.; Galloway, C. M.; Le Ru, E. C.; Cohen, L. F.; Etchegoin, P. G., Chemical Society Reviews 2008, 37 (5), 965-979.
38. Zhang, M.-L.; Fan, X.; Zhou, H.-W.; Shao, M.-W.; Zapien, J. A.; Wong, N.-B.; Lee, S.-T., The Journal of Physical Chemistry C 2010, 114 (5), 1969-1975.
39. Graham, D.; Thompson, D. G.; Smith, W. E.; Faulds, K., Nat Nano 2008, 3 (9), 548-551.
40. Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P., Accounts of Chemical Research 2008, 41 (12), 1653-1661.
41. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Nat Mater 2008, 7 (6), 442-453.
42. Tian, Z.-Q.; Ren, B.; Wu, D.-Y., The Journal of Physical Chemistry B 2002, 106 (37), 9463-9483.
43. Yang, L.; Jiang, X.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J. R., The Journal of Physical Chemistry C 2008, 112 (50), 20095-20098.
44. Kudelski, A.; Grochala, W.; Janik-Czachor, M.; Bukowska, J.; Szummer, A.; Dolata, M., Journal of Raman Spectroscopy 1998, 29 (5), 431-435.
45. Mishra, Y. K.; Mohapatra, S.; Singhal, R.; Avasthi, D. K.; Agarwal, D. C.; Ogale, S. B., Applied Physics Letters 2008, 92 (4), 043107.
46. Lei, D. Y.; Li, J.; Ong, H. C., Applied Physics Letters 2007, 91 (2), 021112.
47. Li, X.; Hu, H.; Li, D.; Shen, Z.; Xiong, Q.; Li, S.; Fan, H. J., ACS Applied Materials & Interfaces 2012, 4 (4), 2180-2185.
48. Zou, X.; Silva, R.; Huang, X.; Al-Sharab, J. F.; Asefa, T., Chemical Communications 2013, 49 (4), 382-384.
49. Ramakrishnan, A.; Neubert, S.; Mei, B.; Strunk, J.; Wang, L.; Bledowski, M.; Muhler, M.; Beranek, R., Chemical Communications 2012, 48 (68), 8556-8558.
50. Li, X.; Chen, G.; Yang, L.; Jin, Z.; Liu, J., Advanced Functional Materials 2010, 20 (17), 2815-2824.
51. Seh, Z. W.; Liu, S.; Low, M.; Zhang, S.-Y.; Liu, Z.; Mlayah, A.; Han, M.-Y., Advanced Materials 2012, 24 (17), 2310-2314.
52. Akyol A.; Yatmaz H.C.; Bayramoglu M., Appl. Catal. B. Environ. 2004, 54 (1), 19-24.
53. Daneshvar N.; Salari D.; Khataee A.R., J. Photochem. Photobiol. A. Chem.
2004, 162 (2), 317-322.
54. Khodja A.A.; Sehili T.; Pihichowski J.F.; Boule P., J. Photochem. Photobiol. A.
2001, 141 (3), 231-239.
55. McLaren, A.; Valdes-Solis, T.; Li, G.; Tsang, S. C., Journal of the American Chemical Society 2009, 131 (35), 12540-12541.
56. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J., Nano Letters 2007, 7 (8), 2183-2187.
57. Bernède, J. C.; Berredjem, Y.; Cattin, L.; Morsli, M., Applied Physics Letters 2008, 92 (8), 083304.
58. Georgekutty, R.; Seery, M. K.; Pillai, S. C., The Journal of Physical Chemistry C 2008, 112 (35), 13563-13570.
59. Xiao, M.; Jiang, R.; Wang, F.; Fang, C.; Wang, J.; Yu, J. C., Journal of Materials Chemistry A 2013, 1 (19), 5790-5805.
60. Warren, S. C.; Thimsen, E., Energy & Environmental Science 2012, 5 (1), 5133-5146.
61. Chen, Z.; Gao, L., Journal of Crystal Growth 2006, 293 (2), 522-527.
62. Vernardou, D.; Kenanakis, G.; Couris, S.; Manikas, A. C.; Voyiatzis, G. A.; Pemble, M. E.; Koudoumas, E.; Katsarakis, N., Journal of Crystal Growth 2007, 308 (1), 105-109.
63. Yi, S.-H.; Choi, S.-K.; Jang, J.-M.; Kim, J.-A.; Jung, W.-G., Journal of Colloid and Interface Science 2007, 313 (2), 705-710.
64. Yin, S.; Han, J.; Zhou, T.; Xu, R., Catal. Sci. Technol. 2015, 5 (12), 5048-5061.
65. Gammon, W. J.; Kraft, O.; Reilly, A. C.; Holloway, B. C., Carbon 2003, 41 (10), 1917-1923.
66. Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J. J. d. A.; Toniazzo, V.; Ruch, D., Langmuir 2011, 27 (6), 2819-2825.
67. Pawlak, D. A.; Ito, M.; Oku, M.; Shimamura, K.; Fukuda, T., The Journal of Physical Chemistry B 2002, 106 (2), 504-507.
68. Guo, L.; Liu, Q.; Li, G.; Shi, J.; Liu, J.; Wang, T.; Jiang, G., Nanoscale 2012, 4 (19), 5864-5867.
69. Sun, C. H.; Wang, M. L.; Feng, Q.; Liu, W.; Xu, C. X., Russian Journal of Physical Chemistry A 2015, 89 (2), 291-296.
70. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C., Applied Surface Science 2010, 257 (3), 887-898.
71. Shan, G.; Zheng, S.; Chen, S.; Chen, Y.; Liu, Y., Colloids and Surfaces B: Biointerfaces 2012, 94, 157-162.
72. Taherpour, A. A.; Rizehbandi, M.; Jahanian, F.; Naghibi, E.; Mahdizadeh, N. A., J Chem Biol. 2015, 9 (1), 19-29.
73. Akin, M. S.; Yilmaz, M.; Babur, E.; Ozdemir, B.; Erdogan, H.; Tamer, U.; Demirel, G., J. Mater. Chem. B 2014, 2, 4894-4900.
74. Kaspar, T. C.; Droubay, T.; Chambers, S. A.; Bagus, P. S., The Journal of Physical Chemistry C 2010, 114 (49), 21562-21571.
75. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., The Journal of Physical Chemistry C 2007, 111 (37), 13794-13803.
76. Zhao, Y.; Chen, G.; Du, Y.; Xu, J.; Wu, S.; Qu, Y.; Zhu, Y., Nanoscale 2014, 6 (22), 13754-13760.
77. Liang, F.; Jin, D.; Ma, P.; Wang, D.; Yang, Q.; Song, D.; Wang, X., Analytical Letters 2015, 48 (12), 1918–1929.
78. Yan, Z.; Zhang, Y.; Wang, W.; Fu, X.; Jiang, H; Liu, Y.; Verma, P.; Kawata, S.; Sun, H., ACS Applied Materials & Interfaces 2015, 7 (49), 27059−27065.
79. Yang, X.; Zhong, H.; Zhu, Y.; Shen, J.; Li, C., Dalton Trans. 2013, 42 (39), 14324-14330.
80. Zang, Y.; Yin, J.; He, X.; Yue, C.; Wu, Z.; Li, J.; Kang, J., Journal of Materials Chemistry A 2014, 2 (21), 7747-7753.
81. Ding, Y.; Bai Y.; Li, W.; Chen, S.; Zhu, Y.; Zhu Y.; Yang Z.; Lu X., Chinese Journal of Catalysis 2010, 31 (10), 1271-1276.
82. Bao, Z. Y.; Liu, X.; Dai, J.; Wu, Y.; Tsang, Y. H.; Lei, D. Y., Applied Surface Science 2014, 301, 351–357.
83. Kumar, V.; Panah, S. M.; Tan, C. C.; Wong, T. K. S.; Chi, D. Z.; Dalapati, G. K., Nanoelectronics Conference 2013, 443-445.
84. Kenji, Y.; Kazuya, Y.; Tatsuhiko, S.; Hirokazu, Y.; Shigenori, M.; Hiroyuki, N., Nanoscience and Nanotechnology Letters 2012, 4, 712-715.
85. He, Z.; Yang, S.; Ju, Y.; Sun, C., Journal of Environmental Sciences 2009, 21 (2), 268-272.
86. Zhu, M.; Meng, D.; Wang, C.; Di, J.; Diao, G., Chinese Journal of Catalysis 2013, 34 (11), 2125–2129.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.128.199.88
論文開放下載的時間是 校外不公開

Your IP address is 3.128.199.88
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code