Responsive image
博碩士論文 etd-0704116-144327 詳細資訊
Title page for etd-0704116-144327
論文名稱
Title
自由基高分子刷薄膜電極之電化學與同步表面型態特性研究
Electrochemical and in-situ surface morphology characteristics of radical polymer brushes for thin-film electrodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-18
繳交日期
Date of Submission
2016-08-04
關鍵字
Keywords
接枝密度、膨潤效應、同步實驗、表面起始原子轉移自由基聚合法、高分子刷
grafting density, in-situ, swelling effect, polymer brush, surface-initiated atom transfer radical polymerization (SI-ATRP)
統計
Statistics
本論文已被瀏覽 5683 次,被下載 29
The thesis/dissertation has been browsed 5683 times, has been downloaded 29 times.
中文摘要
我們以非交聯的方式製作出高分子刷薄膜電極作為正極材料,藉由表面起始原子轉移自由基聚合 (SI-ATRP) 的方式成功製作不同接枝密度且表面均勻平整的有機自由基高分子刷。而有機高分子刷薄膜與導電基板之間使用共價鍵作為鍵結,這個方式不僅可有效防止有機高分子溶解於有機電解液中,也改善了電池的循環壽命。
經由表面接枝密度的計算,可以了解表面起始劑密度與高分子鏈接枝數目的關係。我們將針對不同接枝密度氮氧自由基高分子刷的電化學特性及其表面性質進行探討。在表面性質分析藉由接觸角量測儀、原子力顯微鏡 (AFM) 及電子能譜化學分析儀 (ESCA) 進行表面型態鑑定。在電化學性質分析使用循環伏安法 (CV) 及計時電勢法 (CP),進行氧化還原訊號的觀察與其電容量的量測。結合了原子力顯微鏡與計時安培測定法 (CA) 進行同步 (in-situ) 量測高分子刷薄膜電極表面,以了解在特定電壓下進行反應時的作用機制。
實驗結果發現,起始劑密度1% 的高分子刷不論薄膜厚度的高低,電化學表現上皆相當突出,在電解液中的膨潤效應 (swelling effect) 也較明顯,表示高分子鏈段的活動性也較佳,接枝密度的降低同時也增加離子通道的空間,使離子擴散速度增加,同步實驗中,起始劑密度 1% 的高分子刷在氧化還原時厚度的變化量總是大於起始密度 100% 的高分子刷,這也直接證明起始劑密度 1% 的高分子刷確實擁有較大的離子通道,以利於陰離子的移動。將同步量測氧化條件下的厚度換算活物濃度,代入Cottrell equation,得到了確切的表觀擴散係數,且實驗結果與分子動力模擬是相符合的,起始劑密度1% 的高分子刷具有最快速的表觀擴散係數。
Abstract
We report a novel approach to study the electrochemical performance of nitroxide radical polymer brushes for thin-film electrodes, in association with the in-situ surface morphology characteristics. In this thesis, we synthesized non-cross-linked nitroxide radical polymer brushes as the positive electrode material for thin-film electrodes via surface-initiated atom transfer radical polymerization (SI-ATRP), which is an effective method to produce smoothly surfaced organic radical polymer brushes with different grafting densities. After SI-ATRP, the covalent bonds between the nitroxide polymers and the conducting substrate are formed, which not only prevent the organic polymer from dissolving into organic electrolyte solution but also improve the cycle life performance of batteries. To understand the correlation between the density of surface-initiator and the amount of polymer chains via calculations of grafting density, we examined the electrochemical performance and the morphology of nitroxide radical polymers by varying their grafting densities. The polymer brushes with different grafting densities are characterized by water contact angle goniometer, atomic force microscope (AFM) and electron spectroscopy for chemical analysis (ESCA), along with electrochemistry techniques such as cyclic voltammetry (CV) and chronopotentiometry (CP). For further study of the mechanism in the polymer layer during electrochemical reactions within designated voltage ranges, in-situ measurements are performed by combining AFM and chronoamperometry (CA). The experimental results show that at 1% initiator composition polymer brushes exhibit better electrochemical performance, and the swelling effect in this electrolyte is also more obvious, implying an enhanced motion of polymer chains. Moreover, the space between ionic channels is enlarged by lowing the grafting density, which leads to a faster ionic diffusion rate. Through in-situ measurements, we found that polymer brushes at 1% initiator composition possess larger variation in thickness than at 100% initiator composition, and the value of apparent diffusion coefficients of polymer brushes reaches its maximum at 1% initiator composition as well, which are both in agreement with the molecular dynamic stimulation results. This study provides direct evidence showing that polymer brushes at 1% initiator composition have larger ionic-channel space, allowing more rapid passage of the anions.
目次 Table of Contents
第一章 緒論 1
1-1 簡介 3
1-2 研究動機 6
第二章 文獻回顧 7
2-1 有機自由基高分子 9
2-1.1 自由基 9
2-1.2 氮氧自由基高分子 10
2-1.3 高能量密度高分子設計 11
2-2 有機自由基高分子電池 15
2-2.1 氮氧自由基高分子電池反應機制 17
2-2.2 高分子層內部電子轉移 19
2-3 有機自由基高分子刷 21
2-3.1 原子轉移自由基聚合法 (ATRP) 23
2-3.2 表面起始原子轉移自由基聚合法 (SI-ATRP) 24
2-3.3 控制表面高分子刷密度方法 26
2-4 氮氧自由基高分子刷薄膜電極 27
2-4.1 氮氧自由基高分子刷製備 28
2-4.2 氮氧自由基高分子刷電化學表現 30
2-4.3 氮氧自由基高分子刷的氧化 32
2-5 不同接枝密度氮氧自由基高分子刷薄膜電極 35
2-5.1 不同接枝密度氮氧自由基高分子刷製備 36
2-5.2 不同接枝密度氮氧自由基高分子刷電化學表現 38
2-6 羰基高分子刷薄膜電極 44
第三章 實驗流程 47
3-1 實驗藥品及材料 49
3-2起始劑 (BMPBTS) 的合成 53
3-2.1 化合物but-3-enyl 2-bromo-2-methylpropanoate 合成 53
3-2.2 起始劑 (4-(2-bromo-2-methyl)propionyloxy)butyltrichlorosilane (BMPBTS) 合成 53
3-3 mCPBA的純化 55
3-4 氮氧自由基高分子刷薄膜電極製備 56
3-4.1 ITO 導電玻璃表面修飾 56
3-4.2 氮氧自由基高分子刷薄膜電極製備 57
3-4.3 不同表面起始劑密度PTMA brushes製備 58
3-5 羰基醌類化合物合成 60
3-5.1 化合物1,4-dioxo-1,4-dihydronaphthalen-2-yl acrylate 合成 60
3-5.2 化合物2-Iodoanthraquinone 合成 61
3-5.3 化合物 2-vinylanthraquinone 合成 61
3-5.4 Poly(1,4-dioxo-1,4-dihydronaphthalen-2-yl acrylate) 合成 63
3-5.5 Poly(2 -vinylanthraquinone) 合成 64
3-6 羰基高分子刷薄膜電極製備 64
3-6.1 ITO 導電玻璃表面修飾 64
3-6.2 ITO 表面羰基高分子刷製備 64
3-6.3 鍍金矽晶片表面修飾 65
3-6.4 鍍金矽晶片表面羰基高分子刷製備 66
3-7實驗儀器鑑定分析與原理 67
3-7.1 核磁共振光譜法 (Nuclear Magnetic Resonance, NMR) 67
3-7.2 循環伏安法 (Cyclic Voltammetry, CV) 69
3-7.3 計時安培法 (Chronoamperometry, CA) 71
3-7.4 計時電勢法 (Chronopotentiometry, CP) 71
3-7.5 原子力顯微鏡 (Atomic Force Microscope, AFM) 71
3-7.6 接觸角量測儀 (Contact angle goniometer) 75
3-7.7 膠體滲透層析儀 (Gel Permeation Chromatography, GPC) 76
3-7.8 電子能譜化學分析儀(Electron Spectroscopy for Chemical Analyzer, ESCA) 77
第四章 結果與討論 79
4-1 表面型態測定 81
4-1.1 水接觸角測試 81
4-1.2 原子力顯微鏡測試 82
4-1.3 電子能譜化學分析儀鑑定 84
4-2 接枝密度的計算 87
4-3 電化學性質分析 89
4-4 同步 (in-situ) 量測 90
4-5 擴散係數探討 108
4-5.1 表觀擴散係數的計算 108
4-5.2 分子動力模擬高分子刷的擴散行為 111
4-6 羰基高分子刷 113
第五章 結論與未來展望 115
5-1 結論 117
5-2 未來展望 118
5-2.1 PTMA brushes在不同溶劑下的表面型態 118
5-2.2 改變陰離子大小 118
第六章 參考文獻 119
附錄 127
參考文獻 References
[1] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada and J. B. Goodenough, Journal of The Electrochemical Society 1997, 144, 1609-1613.
[2] R. Yazami, N. Lebrun, M. Bonneau and M. Molteni, Journal of Power Sources 1995, 54, 389-392.
[3] D. Jugović and D. Uskoković, Journal of Power Sources 2009, 190, 538-544.
[4] P. Poizot and F. Dolhem, Energy & Environmental Science 2011, 4, 2003-2019.
[5] P. Novák, K. Müller, K. S. V. Santhanam and O. Haas, Chemical Reviews 1997, 97, 207-282.
[6] F. Beck and P. Rüetschi, Electrochimica Acta 2000, 45, 2467-2482.
[7] J. M. Tarascon and M. Armand, Nature 2001, 414, 359-367.
[8] D. Williams, J. Byrne and J. Driscoll, Journal of The Electrochemical Society 1969, 116, 2-4.
[9] T. Ohzuku, H. Wakamatsu, Z. Takehara and S. Yoshizawa, Electrochimica Acta 1979, 24, 723-726.
[10] S. i. Tobishima, J. i. Yamaki and A. Yamaji, Journal of The Electrochemical Society 1984, 131, 57-63.
[11] K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro and E. Hasegawa, Chemical Physics Letters 2002, 359, 351-354.
[12] K. Oyaizu, A. Hatemata, W. Choi and H. Nishide, Journal of Materials Chemistry 2010, 20, 5404-5410.
[13] W. Choi, D. Harada, K. Oyaizu and H. Nishide, Journal of the American Chemical Society 2011, 133, 19839-19843.
[14] T. Kawai, K. Oyaizu and H. Nishide, Macromolecules 2015, 48, 2429-2434.
[15] M. Armand and J. M. Tarascon, Nature 2008, 451, 652-657.
[16] M. Gomberg, Journal of the American Chemical Society 1898, 20, 773-780.
[17] T. Suga, Y.-J. Pu, K. Oyaizu and H. Nishide, Bulletin of the Chemical Society of Japan 2004, 77, 2203-2204.
[18] Y. Yonekuta, K. Oyaizu and H. Nishide, Chemistry Letters 2007, 36, 866-867.
[19] C. Buhrmester, L. M. Moshurchak, R. L. Wang and J. R. Dahn, Journal of The Electrochemical Society 2006, 153, A1800-A1804.
[20] K. Nakahara, S. Iwasa, J. Iriyama, Y. Morioka, M. Suguro, M. Satoh and E. J. Cairns, Electrochimica Acta 2006, 52, 921-927.
[21] X.-P. Gao and H.-X. Yang, Energy & Environmental Science 2010, 3, 174-189.
[22] M. Suguro, S. Iwasa, Y. Kusachi, Y. Morioka and K. Nakahara, Macromolecular Rapid Communications 2007, 28, 1929-1933.
[23] K. Oyaizu, T. Kawamoto, T. Suga and H. Nishide, Macromolecules 2010, 43, 10382-10389.
[24] P. Nesvadba, L. Bugnon, P. Maire and P. Novák, Chemistry of Materials 2010, 22, 783-788.
[25] H. Nishide, S. Iwasa, Y.-J. Pu, T. Suga, K. Nakahara and M. Satoh, Electrochimica Acta 2004, 50, 827-831.
[26] K. Oyaizu and H. Nishide, Advanced Materials 2009, 21, 2339-2344.
[27] R. Barbey, L. Lavanant, D. Paripovic, N. Schüwer, C. Sugnaux, S. Tugulu and H.-A. Klok, Chemical Reviews 2009, 109, 5437-5527.
[28] B. Zhao and W. J. Brittain, Progress in Polymer Science 2000, 25, 677-710.
[29] T. Jaworek, D. Neher, G. Wegner, R. H. Wieringa and A. J. Schouten, Science 1998, 279, 57-60.
[30] R. Jordan, A. Ulman, J. F. Kang, M. H. Rafailovich and J. Sokolov, Journal of the American Chemical Society 1999, 121, 1016-1022.
[31] R. Jordan and A. Ulman, Journal of the American Chemical Society 1998, 120, 243-247.
[32] M. Suzuki, A. Kishida, H. Iwata and Y. Ikada, Macromolecules 1986, 19, 1804-1808.
[33] O. Prucker, M. Schimmel, G. Tovar, W. Knoll and J. Rühe, Advanced Materials 1998, 10, 1073-1077.
[34] X. Huang and M. J. Wirth, Analytical Chemistry 1997, 69, 4577-4580.
[35] M. Husseman, E. E. Malmström, M. McNamara, M. Mate, D. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell and C. J. Hawker, Macromolecules 1999, 32, 1424-1431.
[36] T. Otsu, T. Ogawa and T. Yamamoto, Macromolecules 1986, 19, 2087-2089.
[37] M. Baum and W. J. Brittain, Macromolecules 2002, 35, 610-615.
[38] J.-S. Wang and K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614-5615.
[39] T. E. Patten and K. Matyjaszewski, Advanced Materials 1998, 10, 901-915.
[40] K. Matyjaszewski and J. Xia, Chemical Reviews 2001, 101, 2921-2990.
[41] M. Lattuada and T. A. Hatton, Langmuir 2007, 23, 2158-2168.
[42] D. M. Jones, A. A. Brown and W. T. S. Huck, Langmuir 2002, 18, 1265-1269.
[43] H. Kong, P. Luo, C. Gao and D. Yan, Polymer 2005, 46, 2472-2485.
[44] A. Carlmark and E. Malmström, Journal of the American Chemical Society 2002, 124, 900-901.
[45] C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides and R. G. Nuzzo, Journal of the American Chemical Society 1989, 111, 321-335.
[46] N. Camillone, C. E. D. Chidsey, G. y. Liu and G. Scoles, The Journal of Chemical Physics 1993, 98, 3503-3511.
[47] J. B. Schlenoff, M. Li and H. Ly, Journal of the American Chemical Society 1995, 117, 12528-12536.
[48] Z. Bao, M. L. Bruening and G. L. Baker, Macromolecules 2006, 39, 5251-5258.
[49] D. W. Sindorf and G. E. Maciel, The Journal of Physical Chemistry 1982, 86, 5208-5219.
[50] P. Claudy, J. M. Letoffé, C. Gaget, D. Morel and J. Serpinet, Journal of Chromatography A 1985, 329, 331-349.
[51] A. Y. Fadeev and T. J. McCarthy, Langmuir 2000, 16, 7268-7274.
[52] K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Vallant, H. Hoffmann and T. Pakula, Macromolecules 1999, 32, 8716-8724.
[53] R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker and J. L. Hedrick, Macromolecules 2000, 33, 597-605.
[54] J.-B. Kim, M. L. Bruening and G. L. Baker, Journal of the American Chemical Society 2000, 122, 7616-7617.
[55] Y. Liu, V. Klep, B. Zdyrko and I. Luzinov, Langmuir 2004, 20, 6710-6718.
[56] K. Nagase, J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa and T. Okano, Langmuir 2008, 24, 511-517.
[57] Y.-H. Wang, M.-K. Hung, C.-H. Lin, H.-C. Lin and J.-T. Lee, Chemical Communications 2011, 47, 1249-1251.
[58] 洪妙肯, 國立中山大學化學系 碩士論文 2011.
[59] Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto and T. Fukuda in Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization, (Ed. R. Jordan), Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 1-45.
[60] J.-K. Chen, C.-Y. Hsieh, C.-F. Huang, P. M. Li, S.-W. Kuo and F.-C. Chang, Macromolecules 2008, 41, 8729-8736.
[61] H. Aoki, M. Kitamura and S. Ito, Macromolecules 2008, 41, 285-287.
[62] H.-C. Lin, C.-C. Li and J.-T. Lee, Journal of Power Sources 2011, 196, 8098-8103.
[63] K. Nakahara, J. Iriyama, S. Iwasa, M. Suguro, M. Satoh and E. J. Cairns, Journal of Power Sources 2007, 165, 870-873.
[64] W.-l. Huang, R. Chiarelli and A. Rassat, Tetrahedron Letters 2000, 41, 8787-8789.
[65] Q. Huang, J. Li, G. A. Evmenenko, P. Dutta and T. J. Marks, Chemistry of Materials 2006, 18, 2431-2442.
[66] Y. Koide, M. W. Such, R. Basu, G. Evmenenko, J. Cui, P. Dutta, M. C. Hersam and T. J. Marks, Langmuir 2003, 19, 86-93.
[67] T. Farhan and W. T. S. Huck, European Polymer Journal 2004, 40, 1599-1604.
[68] H. Ma, M. Wells, T. P. Beebe and A. Chilkoti, Advanced Functional Materials 2006, 16, 640-648.
[69] S. V. Orski, K. H. Fries, G. R. Sheppard and J. Locklin, Langmuir 2010, 26, 2136-2143.
[70] T. Suga, H. Konishi and H. Nishide, Chemical Communications 2007, 1730-1732.
[71] T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu and H. Nishide, Advanced Materials 2009, 21, 1627-1630.
[72] T. Ibe, R. B. Frings, A. Lachowicz, S. Kyo and H. Nishide, Chemical Communications 2010, 46, 3475-3477.
[73] W. Feng, J. Brash and S. Zhu, Journal of Polymer Science Part A: Polymer Chemistry 2004, 42, 2931-2942.
[74] S. Sakaki, N. Mizoe and M. Sugimoto, Organometallics 1998, 17, 2510-2523.
[75] V. K. G. Aggarwal, Z.; Grainger, R. S.;Adams, H.; Spargo, P. L., J. Chem. Soc. 1998, 2771-2781.
[76] A. Rastogi, S. Nad, M. Tanaka, N. D. Mota, M. Tague, B. A. Baird, H. D. Abruña and C. K. Ober, Biomacromolecules 2009, 10, 2750-2758.
[77] C. G. Zoski,; Handbook of Electrochemistry, Elsevier B.V., New York, 2007.
[78] http://www.knvs.tp.edu.tw/AFM/ch4.htm.
[79] https://en.wikipedia.org/wiki/Atomic_force_microscopy.
[80] http://www.eng.utah.edu/~lzang/images/Lecture_10_AFM.pdf.
[81] http://www.teachnano.com/education/AFM.html.
[82] http://www.chembio.uoguelph.ca/educmat/chm729/afm/details.htm.
[83] M. P. Stevens, ; Polymer Chemistry: An Introduction; Oxford University Press, Inc: New York, 1999.
[84] D. A. H. Skoog, F. J.; Crouch, S. R.; Principle of Instrumental 6th Edition, Thomson Brooks/Cole 2006.
[85] http://faculty.chem.queensu.ca/people/faculty/horton/research.pdf.
[86] T. Wu, K. Efimenko and J. Genzer, Journal of the American Chemical Society 2002, 124, 9394-9395.
[87] https://en.wikipedia.org/wiki/In_situ.
[88] S. A. Kulkarni, V. D. Lyles, W. K. Serem, L. Lu, R. Kumar and J. C. Garno, Langmuir 2014, 30, 5466-5473.
[89] 黃國瑋, 國立中山大學化學系 碩士論文 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code