Responsive image
博碩士論文 etd-0704116-154503 詳細資訊
Title page for etd-0704116-154503
論文名稱
Title
先進電阻式記憶體之電阻切換機制與製作技術研究
Study on Resistive Switching Mechanisms and Fabrication Technology of Advanced Resistance Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-18
繳交日期
Date of Submission
2016-08-04
關鍵字
Keywords
電阻切換機制、電阻式記憶體、製作技術、物理機制、傳導機制
Resistance Switching Mechanism, Resistance Random Access Memory, Oxygen Ions, Fabrication Technology, Conduction Mechanism
統計
Statistics
本論文已被瀏覽 5642 次,被下載 16
The thesis/dissertation has been browsed 5642 times, has been downloaded 16 times.
中文摘要
在下一世代電子產品的革新中,物聯網 (Internet of Things, IoT) 與大數據 (Big data) 的發展將引領這波革新的浪潮。由於人們對於下一世代電子產品的需求,除了高性能、節能的特性之外還需要有多功能的特色,這些需求都有賴於電子元件全面的革新。在這波改革的浪潮中,其中又以記憶元件的革新與發展最受人矚目。而在次世代記憶體中,電阻式記憶體(RRAM)因具有高性能與節能的優點,即將成為下一世代的主流記憶體。但目前RRAM面臨最大的問題,就是對於電阻切換機制,沒有統一且明確的理論,尤其是在Forming,Set,與Reset過程最難以釐清。因此釐清RRAM在切換過程中的物理機制的釐清,將是電阻式記憶體能否商品化之關鍵因素。
在RRAM切換的物理機制釐清方面。Forming過程被證明與通過元件之電荷量有相當大的關係。而電荷量的不同會使得導通路徑形成之連續性不同,進而使得元件在LRS之電流傳導機制不同,本論文首次釐清RRAM在Forming過程中,通過元件之電荷量扮演重要的角色,並影響RRAM記憶元件之操作機制。另外,Set過程也利用電荷量來建立Set過程的動態機制,本論文首次釐清RRAM在Set過程中有三個過程,而這些過程都主導著導通路徑形成的方式與型態。而Reset過程則是被證明,其切換的效率與熱能有相當大的關係,本論文首次釐清Reset過程中的氧離子會被熱能所活化,而活化的氧離子增多可以使得Reset過程更有效率。
在製作技術方面,本論文首次提出利用氫電漿處理以達到互補式的電阻切換行為,並且證明在RRAM中同時存在氧離子(陰離子)與氫離子(陽離子)的切換行為。另外,本論文首次提出利用氮摻雜以達成超低功耗的RRAM特性,並且提出模型解釋其物理機制為氧離子的堆積與驅散造成能障改變。
Abstract
With the evolution of next-generation electronic products, internet of things (IoT) and big data will lead the progress of microelectronic engineering. Because of the demand for the next generation electronic products, high performance, energy-saving, and multi-functional features are necessary based on a comprehensive innovation of electronic devices. During the development of advanced electronic products, innovation and application of memory devices attract the most attention in the world. Among next-generation electronic digital memory devices, resistive random access memory (RRAM) will become the mainstream of the next-generation memory due to the advantages of high performance and energy saving. However, an obstacle that hinders RRAM to be put into mass production is the non-uniform resistance switching mechanism in its resistance switching process including Forming, Set, and Reset process.
In clarification of RRAM switching mechanism, the Charge Quantity Model is founded to clarify this phenomenon: the continuity of filament will be affected by the conduction carrier amount and thus a different conduction mechanism can be observed in LRS. This is the first time to clarify the important role of carrier amount in forming process, which influences RRAM conduction mechanism. In addition, the dynamic mechanism of set process has been clarified by the quantity of charge through the switching layer. This is the first time to clarify that there are three process included in set process, and these process play a key role in the conduction path formation mechanism during set process. In Reset process, we have proven that the effect of thermal on the mechanism of reset process and the influence on RRAM switching characteristics. This is the first time to clarify that thermal will make reset process more efficient due to there are more amount of oxygen ions are activated by heat during reset process.
In fabrication technology of RRAM, This is the first time to observe not only typical oxygen ion-dominated resistive switching, hydrogen ions were also observed to trigger a resistance transformation phenomenon, producing a complementary resistive switching behavior of RRAM. In addition, this is the first time to observe an ultra-low power consumption RRAM by nitrogen doping and proposed a model to explain the varied barrier height induced by oxygen-ion accumulation.
目次 Table of Contents
Chinese Abstract………………………..……….……………….………………..……i
English Abstract.…………………..………………………...………………………...ii
Contents…………………….…………………………………………………………iv

Chapter 1 Background Introduction……………………...………………………...1
1-1 Introduction of memory.………………..…….………………………...………..1
1-2 Advanced Memory……..……………………………………………..………….4

Chapter 2 Literature Review..………………………………...........………..…........9
2-1 Basic Introduction of RRAM………..……………………………………….…..9
2-2 Materials of RRAM……………………..………………………………………10
2-3 The Switching Mechanism of RRAM………………………….…...…………..17
2-4 Carrier Conduction Mechanisms in RRAM…………………...……...….……..27
2-5 Commercial Application of RRAM…………………...………..…….….……..31
2-6 RRAM’s Global Development and Taiwan Standing……….……......….……..35
2-7 Motivation of this Dissertation………………..……………………....….……..41

Chapter 3 Charge Quantity Influence on Resistance Switching Characteristic during Forming Process.……………………………………………………………44
3-1 Charge Quantity Influence on Formation Mechanism of Conduction Path in RRAM during Forming Process…………………………….………………………..44
3-2 Charge Quantity Influence on Carrier Conduction Mechanism and Characteristic of HRS in RRAM during Forming Process………………………………….…...….51

Chapter 4 Charge Quantity Influence on Resistance Switching Behavior during Set Process……………………………………………………………………...…....59
4-1 Motivation……………………………………………….…………….………..59
4-2 Process Flow of RRAM Devices………………………………………....…….59
4-3 Experimental Method…………………………………………………….……..60
4-4 Results and Discussion………….……………………………...…………….…70

Chapter 5 Influence of Thermal Effect on Resistive Switching Behavior during Reset Process…………………………………………………………...………...….87
5-1 Motivation………………….………………………………………….….….....87
5-2 Experimental Method……………………………………………….….…...…..87
5-3 Results and Discussion………………………...……………...….……….…….93

Chapter 6 Tri-resistive Switching Behavior of Hydrogen Induced Resistance Random Access Memory……………………………...……………………………97
6-1 Motivation…………………………………………………….……………...…97
6-2 Experimental Method…………………………………...………………...…….98
6-3 Results and Discussion…………………………………………......……..…….98
6-4 Summary……………………………………………………...………..…..….104

Chapter 7 Ultra-high Resistive Switching Mechanism Induced by Oxygen Ion Accumulation on Nitrogen-doped Resistive Random Access Memory………...105
7-1 Motivation…………………………………………………..…………....……105
7-2 Experimental Method……………………………………….…...…...……..…106
7-3 Results and Discussion………………………………………….….………….107
7-4 Summary…………………………………………………….….………….......112
Chapter 8 Conclusion…………………………………………..………………….114

References………………………………………………………..……...………….117

Publication List……………………………………………...……………………..120
參考文獻 References
[1] D. Kahng et al., Bell Syst. Tech. J. (1967) 46, 1288.
[2] S. M. Sze, Semiconductor devices physics and technology, Wiley, Hoboken, NJ, USA 2002.
[3] I. Hwang et al., App. Phys. Lett. (2015) 106, 193106.
[4] A. Gyanathan et al., J App Phys. (2012) 112, 104504.
[5] S. Raoux et al., Phys. Status Solidi B (2012) 249(10), 1999–2004.
[6] D. Loke, et al., Science (2012) 336(6088), 1566-1569.
[7] T. Kojima et al., App. Phys. Lett. (2002) 80(15), 2746.
[8] R. Bez et al., Mater. Sci. Semicond. Process (2004) 7(4-6), 349–355.
[9] H. Ishiwara et al., Curr. Appl Phys (2012) 12(3), 603–611.
[10] J. G. Zhu et al., J App Phys. (2000) 87, 6668.
[11] N. Nishimura et al., J App Phys. (2002) 91, 5246.
[12] A. Ney et al., Nature (2003) 425, 485-487.
[13]T. C. Chang et al., Mater. Today (2011) 14, 608-615.
[14] I. L. Prejbeanu et al., J. Phys. D: Appl. Phys. (2013) 46, 1-16.
[15] H.-S. Philip Wong et al., Proc. IEEE (2012) 100(6), 1951-1970.
[16] K. M Kim et al., Nanotechnology (2011) 22(25), 254022.
[17] H. W. Zhang et al., Appl. Phys. Lett. (2011) 98, 042105.
[18] H. Y. Jeong et al., Adv. Funct. Mater. (2010) 20(22), 3912–3917.
[19] W. H. Guan et al., Appl. Phys. Lett. (2007) 91, 062111.
[20] Q. Liu et al., Appl. Phys. Lett. (2008) 92, 012117.
[21] M. Liu et al., Appl. Phys. Lett. (2009) 94, 233106.
[22] Y. T. Li et al., IEEE Electron Device Lett. (2010) 31(2), 117-119.
[23] Q. Liu et al., Adv. Mater. (2012) 24, 1844-1849.
[24]Gary A. Prinz, Science 282, 1660-1663 (1998)
[25] D. N. Nguyen and L. Z. Scheick, Radiation Effects Data Workshop, 2001 IEEE 57-61 (2001)
[26] R. Zhao, L.P. Shi et al., Non-Volatile Memory Technology Symposium, 2007. NVMTS 07, 36-39 (2007)
[27] T. W. Hickmott, J. Appl. Phys. 33, 2669 (1962)
[28] A. Beck, J. G. Bednorz et al., Appl. Phys. Lett. 77,139 (2000)
[29]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokurad, Appl. Phys. Lett. 85, 4073 (2004)
[30] Y. Watanabe, J. G. Bednorz et al., Appl. Phys. Lett. 78, 3738 (2001)
[31] A. Beck, J. G. Bednorz et al., Appl. Phys. Lett. 77, 139 (2000)
[32] L. P. Ma, J. Liu et al., Appl. Phys. Lett. 80, 2997 (2002)
[33] S. Seo, M. J. Lee et al., Appl. Phys. Lett. 85, 5655 (2004)
[34] W. Y. Chang, Y. C. Lai et al., Appl. Phys. Lett. 92, 022110 (2008)
[35] W. Guan, S. Long, R. Jia, and M. Liu, Appl. Phys. Lett. 91, 062111 (2007)
[36] C. P. Hsiung, J. Y. Gan et al., Electrochemical and Solid-State Letters 12 (7), G31-G33 (2009)
[37] M.Y. Chan, T. Zhang, V. Ho and P. S. Lee, Microelectronic Engineering 85, 2420 (2008)
[38] M. J. Rozenberg, I. H. Inoue et al., Phys. Rev. Lett. 92, 178302 (2004)
[39] J. Y. Son and Y. H. Shina, Appl. Phys. Lett 92, 222106 (2008)
[40] S. H. Chang, S. C. Chae et al., Appl. Phys. Lett. 92, 183507 (2008)
[41] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009)
[42] K. C. Liu, W. H. Tzeng et al., Microelectronics Reliability 50, 670 (2010)
[43] A. Sawa et al., Mater. Today (2008) 11, 28-36.
[44] R. Waser et al., Adv. Mater. (2009) 21, 2632–2663.
[45] D. Ielmini and Y. Zhang, J. Appl. Phys. 102, 054517 (2007)
[46] Y. E. Syu et al., IEEE Electron Device Lett. (2012) 33(3), 342-344.
[47] T. J. Chu et al., Appl Phys Lett. (2014) 105, 223514.
[48] K. C. Chang et al., IEEE Electron Device Lett. (2013) 34(3), 399-401.
[49] D. Walczyk et al., Microelectron. Eng. (2011) 88(7), 1133–1135.
[50] Y. Y. Chen et al., IEEE Trans. Electron Devices (2013) 60(3), 1114-1121.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code