Responsive image
博碩士論文 etd-0704117-181709 詳細資訊
Title page for etd-0704117-181709
論文名稱
Title
共擬態群集的演化:以東南亞異紋紫斑蝶擬態複合群為例
Evolution of co-mimicry assemblage: A case study based on the Euploea mulciber mimicry complex
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-22
繳交日期
Date of Submission
2017-08-18
關鍵字
Keywords
特徵演化、分子定年法、關聯性演化、貝氏擬態、穆氏擬態
molecular dating, Batesian mimicry, Müllerian mimicry, chemical defense, character evolution, correlated evolution
統計
Statistics
本論文已被瀏覽 5762 次,被下載 51
The thesis/dissertation has been browsed 5762 times, has been downloaded 51 times.
中文摘要
擬態物種的斑紋多樣性與獨特性的演化起源是擬態生物學中的核心議題。一個擬態群中,具有次級防禦機制的模型物種扮演「教育」捕食者的角色,減少捕食者對該斑紋的攻擊,增加其它缺乏或具有較弱次級防禦共擬態物種適存度,因此理論上預測此類物種的演化時程應早於其他的共擬態物種,且其斑紋的變異可能是促使物種分化的重要原因之一。然而,以基因資料為基礎的研究顯示,無論是在貝氏擬態或穆氏擬態的例子中,其斑紋的演化歷程可能與種化歷程有所差異。因此,若擬態的斑紋可能隨著生態或環境因子的改變而變化,並非隨物種分化時形成後即不改變,則擬態物種的種化與斑紋的演化假設就需要進一步探討。本論文中針對廣泛分佈自印度東北部,經中印半島至巽他群島,以異紋紫斑蝶為首的擬態群為討論主題。該擬態群包含至少十個屬於蛺蝶科、鳳蝶科與斑蛾科的物種,並且涉入複雜的雌雄二態性、共域以及異域的多態性,與不同生化來源的次級防禦機制。在本研究中,我以比較複數親緣關係的策略,包含模型物種的紫斑蝶屬(斑蝶亞科),加上紫蛇目蝶屬(眼蝶亞科)、鳳蝶屬下的斑鳳蝶亞屬(鳳蝶亞科)與蝶斑蛾屬(螢斑蛾亞科)等擬態物種為操作單元,比較物種分化年代與分析斑紋演化趨勢。第一章中,從檢查大量的博物館藏標本並抄錄其標籤資訊,並整合文獻紀錄,探索該擬態群中各物種的斑紋與預測地理分佈。結果顯示此擬態群中無論模型或擬態者都具有高度斑紋多樣性,而典型的「異紋紫斑蝶」的優勢區域起自於印度至大巽他群島區域,以華萊士線為界,小巽他群島與菲律賓內個生物地理區則各自過渡為不同的擬態斑紋。第二章中,以分子資訊重建蝶斑蛾屬的親緣關係,並推測其斑紋的擬態與雌雄二態性的衍徵演化。結果發現可能足以提升為種階層的隱蔽種,以及需降階的已知種。在衍徵演化部份,無論是擬態或是雌雄二態性皆來自複數次獨立演化起源。第三章中,以分子資訊重建斑鳳蝶亞屬的親緣關係,並推測其擬態是否精確的演化趨勢。結果顯示數個物種內的大陸族群與島嶼有分化的潛勢,但仍需配合型態資訊以確認其分類地位。此外擬態精確度的演化趨勢為從精確至不精確,但目前缺少相關的生態與生物學資訊,因此該現象成因仍待未來調查。第四章中,透過目標分類群的多基因資料矩陣,以貝式機率演算法估計其物種分化年代。經過比較擬態群中的物種與種下階層的分化年代後,顯示多數的目標物種的分化皆晚於異紋紫斑蝶,支持原本的演化假設。然而,斑鳳蝶的分化年代卻遠早於異紋紫斑蝶,與原假設有所衝突。此研究發現擬態性狀的發生與物種產生有不同步的可能性,其演化歷程可能比預期中複雜。綜合以上結果,本研究是首度透過建構數個擬態物種的親緣關係,並以此為基礎推測擬態群成員間的斑紋演化歷程。結果指出雖然模型物種是促使擬態群成員的翅紋演化的重要角色,然而目前的證據顯示參與擬態的物種分化與斑紋的生成時序並非必然受到模型物種的影響。
Abstract
Evolution of phenotypic novelty is one of the core questions in mimicry biology. Diversity of mimicry complex results from complex ecological interactions between and/or within species, such as predator/prey arm race or mating preference. Theoretically, a model species leading a mimicry complex has conspicuous warning coloration alone with unprofitable secondary defense to “educate” predator to produce aversive experience to avoid attack the prey displaying similar visual signal, hence it should evolve earlier than profitable or moderately unprofitable mimics evolutionarily. Thus, variety of mimetic pattern is also considered as a significant factor to promote speciation. This idea has been believed until recent molecular phylogenetic studies argued that evolutionary history of mimetic pattern could be incongruent with speciation. Moreover, mimetic phenotype of mimic can possibly reverse back to ancestral state or become imperfect evolutionarily when distributes allopatrically with its model. Therefore, if speciation would be not always altered with mimetic phenotype, or vise versa, the hypothesis of “model always evolves ealier than mimics” may be not tenable extensively. In the present study, I studied a mimicry complex dominated by Euploea mulciber which is distributed from northeast India, Indochina, to Sunda islands. So far, at least 10 species from 3 lepidopteran families are known involved in the mimicry complex, and show extraordinary sexually dimorphic or polymorphic wing pattern by various biogeographic regions. To test the hypothsis, the present study focused on the temporal correlation in appearance of mimetic characters between the model genus, Euploea (Danainae), and three mimic genera, Elymnias (Satyrinae), Papilio (Chilasa) (Papilioninae), and Cyclosia (Chalcosiinae). In Chapter 1, investigation of the phenotypic diversity and distribution of the mimicry complex suggests several surprisingly results. Not only the mimics but the model exhibit considerable variety of wing pattern. Interestingly, the co-mimics exhibiting the “classic Eu. mulciber” phenotype is constrained from India subcontinent to Sundaland. Transitions of mimetic pattern in the Philippines and lesser Sundaland are observed, and the boudanry between the classic and transited patterns is essentially in accordance with the Wallace’s line. In Chapter 2, reconstruction of the molecular phylogeny of Cyclosia and inference of evolution of sexual dimorphism and mimetic wing pattern reveals the underestimated species diversity, and repeatedly evolved sexual dimorphic and mimetic wing pattern. In Chapter 3, reconstruction of the molecular phylogeny of Papilio (Chilasa) and inference of evolution of mimicry reveal existence of cryptic species. Divergence between continental and insular population occurs repeatedly in most species. The evolutionary trend of the co-mimicking taxa is from perfection to imperfection. The ecological factors what would influence the trend (e.g. predation pressure, body size, chemical defense or forest structure) are not clear yet, and it requires more investigation to address the question in future. In Chapter 4, I adopted the Bayesian analysis to infer the divergence time of the model and co-mimics species by using respective phylogeny of the above genera. The results show that all co-mimicking species evolved later than the model except P. (C.) paradoxa, but the infra-specific divergence of all the species were later than the model, suggesting that the Eu. mulciber phenotype of the mimics may acquire recently. In summary, the present study is the first to test the classical prediction of relative divergence times between co-mimicking lineages by using multiple independent phylogenies. The results suggest that the times of speciation and origin of mimetic phenotype are not necessarily correlated with each other, though model plays a key role in driving evolution of wing pattern of its followers.
目次 Table of Contents
論文審定書 i
公開授權書 ii
誌謝 iii
摘要 iv
Abstract vi
Table of content ix
List of Figures xii
List of Tables xiv
Chpater 1 Phenotypic diversity and geographic distributions of “Euploea mulciber mimicry complex” using an extensive museum collection 16
1.1 Abstract 17
1.2 Introduction 19
1.3 Material and methods 23
1.4 Results 29
1.5 Discussion 31
Chpater 2 Molecular phylogeny of the genus Cyclosia (Zygaenidae: Chalcosiinae) and evolution of mimicry and sexual dimorphism 47
2.1 Abstract 48
2.2 Introduction 50
2.3 Material and methods 54
2.4 Results 61
2.5 Discussion 66
Chpater 3 Molecular phylogeny of the Papilio subgenus Chilasa (Papilionidae) and the evolution of perfection in mimetic wing pattern 81
3.1 Abstract 82
3.2 Introduction 84
3.3 Material and methods 87
3.4 Results 89
3.5 Discussion 91
Chpater 4 Divergence times of co-mimicking lineages of the “Euploea mulciber mimicry complex” in southeast Asia 110
4.1 Abstract 111
4.2 Introduction 113
4.3 Material and methods 117
4.4 Results 121
4.5 Discussion 122
References 130
Appendix 1. 143
Appendix 2. 156
Appendix 3. 157
Appendix 4. 159
Appendix 5. 160
Appendix 6. 161
參考文獻 References
Alberti B. 1954. Über Die Stammesgeschichtliche Gliederung der Zygaenidae Nebst Revision Einiger Gruppen (Insecta, Lepidoptera). Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 30: 115–481.
Allen CE, Zwaan BJ & Brakefield PM. 2011. Evolution of sexual dimorphism in the Lepidoptera. Annual review of entomology 56: 445-464.
Aoki T, Yamaguchi S & Uemura Y. 1982. Butterflies of the South East Asian Islands: Satyridae, Amathusiidae and Libytheidae. Tokyo: Plapac.
Arias M, lePoul Y, Chouteau M, Boisseau R, Rosser N, Théry M & Llaurens V. 2016. Crossing fitness valleys: empirical estimation of a fitness landscape associated with polymorphic mimicry. Proceedings of the Royal Society B: Biological Sciences 283: 20160391.
Balogh ACV, Gamberale-Stille G & Leimar O. 2008. Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour 76: 1591–1599.
Bates HW. 1862. Contributions to an Insect Fauna of the Amazon Valley. Lepidoptera: Heliconidae. Transactions of the Linnean Society of London 23: 495–566.
Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman B a, Dawson A, Beltran M, Perez-Espona S, Chamberlain N, Ferguson L, Clark R, Davidson C, Glithero R, Mallet J, McMillan WO, Kronforst M, Joron M, Ffrench-Constant RH & Jiggins CD. 2010. Genomic Hotspots for adaptation: The population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genetics 6: e1000794.
Boppré M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (Pyrrolizidine alkaloids). Naturwissenschaften 73: 17–26.
Boppré M. 1990. Exemplification of complexity in chemical ecology. Journal of chemical ecology 16: 165–185.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A & Drummond AJ. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology 10: e1003537.
Brower AVZ. 1996. Parallel race formation and the evolution of mimicry in Heliconius Butterflies: a phylogenetic hypothesis from mitochondrial DNA sequences. Evolution 50: 195–221.
Brower AVZ. 2006. Problems with DNA barcodes for species delimitation: ‘Ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Systematics and Biodiversity 4: 127–132.
Brower AVZ. 2010. Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity 8: 485–491.
Brown KS. 1984. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309: 707–709.
Brown JM & Lemmon AR. 2007. The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Systematic biology 56: 643–55.
Brown KS, Sheppard PM & Turner JRG. 1974. Quaternary refugia in tropical America: evidence from race formation in Heliconius butterflies. Proceedings of the Royal Society B: Biological Sciences 187: 369–378.
Bryk F. 1930. Papilionidae III. Lepidopterorum catalogus 39: 217–218, 591–596
Caterino MS & Sperling FAH. 1999. Papilio phylogeny based on mitochondrial Cytochrome Oxidase I and II genes. Molecular Phylogenetics and Evolution 11: 122–137.
Charlesworth D. 2016. The status of supergenes in the 21st century: recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations. Evolutionary Applications 9: 74–90.
Clark R, Brown SM, Collins SC, Jiggins CD, Heckel DG & Vogler AP. 2008. Colour pattern specification in the Mocker swallowtail Papilio dardanus: the transcription factor invected is a candidate for the mimicry locus H. Proceedings of the Royal Society B: Biological Sciences 275: 1181–1188.
Clark R & Vogler AP. 2009. A phylogenetic framework for wing pattern evolution in the mimetic mocker swallowtail Papilio dardanus. Molecular Ecology 18: 3872–3884.
Clarke CA & Sheppard PM. 1960. Super-genes and mimicry. Heredity 14: 175–185.
Clarke CA & Sheppard PM. 1962. Disruptive selection and its effect on a metrical character in the butterfly Papilio dardanus. Evolution 16: 214.
Cohen KM, Finney SC, Gibbard PL & Fan JX. 2013. The ICS international chronostratigraphic chart. Episodes 36: 199–204.
Corbet AS & Pendlebury HM. 1992. The butterflies of the Malay Peninsula. Fourth Edition. Kuala Lumpur: Malaysian Nature Society.
Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R, Ferguson L, Joron M, Ffrench-Constant RH, Smith CP, Nielsen DM, Chen R, Jiggins CD, Reed RD, Halder G, Mallet J & McMillan WO. 2010. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genetics 6: e1000796.
Dasmahapatra KK, Elias M, Hill RI, Hoffman JI & Mallet J. 2010. Mitochondrial DNA barcoding detects some species that are real, and some that are not. Molecular Ecology Resources 10: 264–273.
Drummond AJ & Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Edgar J. 1975. Danainae (Lep.) and 1,2-Dehydropyrrolizidine Alkaloid-containing plants -- with reference to observations made in the new hebrides. Philosophical Transactions of the Royal Society B: Biological Sciences 272: 467–476.
Edmunds M. 1974. Defence in animals: a survey of anti-predator defences. London: Longman.
Eisner T, Morgan RC, Attygalle AB, Smedley SR, Herath KB & Meinwald J. 1997. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). The Journal of Experimental Biology 200: 2493–2500.
Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AVZ, Mallet J & Jiggins CD. 2007. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B: Biological Sciences 274: 2881–2889
Emmel TC, Minno MC & Drummond BA. 1992. Florissant butterflies: a guide to the fossil and present-day species of central Colorado. Redwood City: Stanford University Press.
Endo T & Kishida Y. 1999. Day-flying moths: Chalcosiinae, Epicopeia. Tokyo: Endless Science Information.
Exnerová A, Svádová KH, Fucíková E, Drent P, Stys P, Exnerova A, Svadova KH, Fucikova E, Drent P & Stys P. 2010. Personality matters: individual variation in reactions of naive bird predators to aposematic prey. Proceedings of the Royal Society B: Biological Sciences 277: 723–728.
Fernández-Rubio F & Nel A. 2000. Neurosymploca? oligocenica, a new fossil species of Lepidoptera Zygaenoidea of the Oligocene of Céreste (Luberón, Francia). Boletin de la SEA: 7–16.
Fisher RA. 1927. On some objections to mimicry theory: statistical and genetic. Transactions of the Royal Entomological Society of London 75: 269–278.
Fisher RA. 1930. The Genetical Theory of Natural Selection: A Complete Variorum Edition. Oxford: Oxford University Press.
Flanagan NS, Tobler A, Davison A, Pybus OG, Kapan DD, Planas S, Linares M, Heckel D & McMillan WO. 2004. Historical demography of Müllerian mimicry in the neotropical Heliconius butterflies. Proceedings of the National Academy of Sciences 101: 9704–9709.
Folmer O, Black M, Hoeh W, Lutz R & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology 3: 294–299.
Franks DW & Noble J. 2004. Batesian mimics influence mimicry ring evolution. Proceedings of the Royal Society B: Biological Sciences 271: 191–196.
Fürstenberg-Hägg J, Zagrobelny M, Jørgensen K, Vogel H, Møller BL & Bak S. 2014. Chemical defense balanced by sequestration and de novo biosynthesis in a Lepidopteran specialist. PLoS ONE 9: e108745.
Gavrilets S & Hastings A. 1998. Coevolutionary chase in two-species systems with applications to mimicry. Journal of Theoretical Biology 191: 415–427.
Grobman AB. 1978. An alternative solution to the coral snake mimic problem (Reptilia, Serpentes, Elapidae). Journal of Herpetology 12: 1–11.
Hajibabaei M, Janzen DH, Burns JM, Hallwachs W & Hebert PDN. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences 103: 968–971.
Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hancock DL. 1983. Classification of the Papilionidae (Lepidoptera): a phylogenetic approach. Smithersia 2: 1-48.
Hancock DL. 2009. Relationships of the swallowtail ‘Genera’ Agehana Matsumura, Chilasa Moore and Eleppone Hancock (Lepidoptera: Papilionidae). Australian Entomologist 36: 7–12.
Häuser CL, deJong R, Lamas G, Robbins RK, Smith C & Vane-Wright RI. 2005. Papilionidae–revised GloBIS/ GART species checklist (2nd draft).
Hausmann A, Haszprunar G & Hebert PDN. 2011. DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): successes, surprises, and questions. PLoS ONE 6: 1–9.
Hebert PDN, Cywinska A, Ball SL & deWaard JR. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321.
Hebert PDN, Penton EH, Burns JM, Janzen DH & Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences 101: 14812–14817.
Hebert PDN, Ratnasingham S & deWaard JR. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270: S96–S99.
Herring M. 1922. Revision der orientalischen Chalcosiinen. Archiv für Naturgeschichte 88A: 1–93.
Hines HM, Counterman BA, Papa R, Albuquerque de Moura P, Cardoso MZ, Linares M, Mallet J, Reed RD, Jiggins CD, Kronforst MR & McMillan WO. 2011. Wing patterning gene redefines the mimetic history of Heliconius butterflies. Proceedings of the National Academy of Sciences 108: 19666–19671.
Holling CS. 1961. Principles of insect predation. Annual Review of Entomology 6: 163–182.
Holling CS. 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada 97: 1–60.
Holloway JD. 2011. The moths of Borneo: Families Phaudidae, Himantopteridae and Zygaenidae; revised and annotated checklist. Malayan Nature Journal 63: 1–601.
Honda Y, Honda K & Ômura H. 2006. Major components in the hairpencil secretion of a butterfly, Euploea mulciber (Lepidoptera, Danaidae): their origins and male behavioral responses to pyrrolizidine alkaloids. Journal of Insect Physiology 52: 1043–1053.
Huemer P, Mutanen M, Sefc KM & Hebert PDN. 2014. Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLoS ONE 9: 1–21.
Huheey JE. 1976. Studies in warning coloration and mimicry. VII. Evolutionary consequences of a Batesian-Müllerian Spectrum: a model for Müllerian mimicry. Evolution 30: 86.
Huheey JE. 1988. Mathematical models of mimicry. The American Naturalist 131: S22-S41.
Igarashi S. 1976. What characterizes the genus Chilasa. Yadoriga 87: 3–16.
Igarashi S. 1984. The classification of the Papilionidae mainly based on the morphology of their immature stage. Tyo to Ga 34: 41–96.
IUCN. 2017. The IUCN Red List of Threatened Species. Version 2017-1. Http://www.iucnredlist.org. Downloaded on 12 May 2017.
Janzen DH, Hajibabaei M, Burns JM, Hallwachs W, Remigio E & Hebert PDN. 2005. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1835–1845.
Jiggins CD, Salazar C, Linares M & Mavarez J. 2008. Hybrid trait speciation and Heliconius butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 3047–3054.
Jones DA, Parsons J & Rothschild M. 1962. Release of hydrocyanic acid from crushed tissues of all stages in the life-cycle of species of the Zygaeninae (Lepidoptera). Nature 193: 52–53.
Jordan K. 1909. Family: Papilionidae. In: Seitz A, ed. The Macrolepidoptera of the World. Vol. 9. The Indo-Australian Rhopalocera. Stuttgart: Alfred Kernen Verlag, 11–109.
Joron M. 2005. Polymorphic mimicry, microhabitat use, and sex-specific behaviour. Journal of Evolutionary Biology 18: 547–556.
Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Bermingham E, Humphray SJ, Rogers J, Beasley H, Barlow KH, Ffrench-Constant RH, Mallet J, McMillan WO, Jiggins CD, Beltran M, Chamberlain N, Mavarez J, Baxter S, Abanto M, Bermingham E, Humphray SJ, Rogers J, Beasley H, Barlow KH, Barlow KH, Mallet J, McMillan WO, Jiggins CD, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Bermingham E, Humphray SJ, Rogers J, Beasley H, Barlow KH, Ffrench-Constant RH, Mallet J, McMillan WO & Jiggins CD. 2006a. A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biology 4: 1831–1840.
Joron M, Jiggins CD, Papanicolaou A & McMillan WO. 2006b. Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity 97: 157–167.
Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, Whibley A, Becuwe M, Baxter SW, Ferguson L, Wilkinson P a, Salazar C, Davidson C, Clark R, Quail M a, Beasley H, Glithero R, Lloyd C, Sims S, Jones MC, Rogers J, Jiggins CD & Ffrench-Constant RH. 2011. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477: 203–206.
Joron M & Mallet JLB. 1998. Diversity in mimicry: paradox or paradigm? Trends in Ecology and Evolution 13: 461–466.
Joshi J, Prakash A & Kunte K. 2017. Evolutionary assembly of communities in butterfly mimicry rings. The American Naturalist 189: E58–E76.
Kassarov L. 2001. Do cyanogenic glycosides and pyrrolizidine alkaloids provide some butterflies with a chemical defense against their bird predators? A different point of view. Behaviour 138: 45–67.
Kishino H & Hasegawa M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29: 170–179.
Komata S, Lin CP, Iijima T, Fujiwara H & Sota T. 2016. Identification of doublesex alleles associated with the female-limited Batesian mimicry polymorphism in Papilio memnon. Scientific reports 6.
Kunte K. 2008. Mimetic butterflies support Wallace’s model of sexual dimorphism. Proceedings of the Royal Society B: Biological Sciences 275: 1617–1624.
Kunte K. 2009a. The diversity and evolution of batesian mimicry in Papilio swallowtail butterflies. Evolution 63: 2707–2716.
Kunte K. 2009b. Female-limited mimetic polymorphism: a review of theories and a critique of sexual selection as balancing selection. Animal Behaviour 78: 1029–1036.
Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP & Kronforst MR. 2014. Doublesex is a mimicry Supergene. Nature 507: 229–232.
Lanfear R, Calcott B, Ho SYW & Guindon S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701.
Lees DC, Kawahara AY, Rougerie R, Ohshima I, Kawakita A, Bouteleux O, DePrins J & Lopez-Vaamonde C. 2014. DNA barcoding reveals a largely unknown fauna of Gracillariidae leaf-mining moths in the Neotropics. Molecular Ecology Resources 14: 286–296.
Lewis ME, Hausmann A, Haszprunar G, Segerer AH, Speidel W, Behounek G & Hebert PDN. 2011. Now DNA-barcoded: the butterflies and larger moths of Germany. Spixiana 34: 47–58.
Lohman DJ, Wei CH, Scott DW, Yang E, Tsang S, Pradhan A, Peggie D, Kunte K, Müller C, Silverman B, Buuenavente PC & Yen SH. Adaptive radiation of Batesian mimics across the Indo-Australian Archipelago. In preparation.
Maddison WP & Maddison DR. 2017. Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org.
Malcolm SB. 1990. Mimicry: status of a classical evolutionary paradigm. Trends in Ecology and Evolution 5: 57–62.
Mallet J. 1986. Hybrid zones of Heliconius butterflies in Panama and the stability and movement of warning colour clines. Heredity 56: 191–202.
Mallet J. 1993. Speciation, raciation, and color pattern evolution in Heliconius butterflies: evidence from hybrid zones. In: Harrison RG, ed. Hybrid zones and the evolutionary process. Oxford: Oxford University Press, 226–260.
Mallet J. 1999. Causes and consequences of a lack of coevolution in Müllerian mimicry. Evolutionary Ecology 13: 777–806.
Mallet J. 2010. Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry. Ecological Entomology 35: 90–104.
Mallet J & Dasmahapatrs KK. 2012. Hybrid zones and the speciation continuum in Heliconius butterflies. Molecular Ecology 21: 5643–5645.
Mallet J & Gilbert LE. 1995. Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biological Journal of the Linnean Society 55: 159–180.
Mallet J, Jiggins CD & McMillan WO. 1996. Evolution: mimicry meets the mitochondrion. Current Biology 6: 937–940.
Mallet J & Joron M. 1999. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Annual Review of Ecology and Systematics 30: 201–233.
Mallet J, Mcmillan WO & Jiggins CD. 1998. Mimicry and warning color at the boundary between races and species. In: Howard DJ, Berlocher SH, eds. Endless Forms: Species and Speciation. Oxford: Oxford University Press, 390–403.
Mappes J & Alatalo RV. 1997. Batesian mimicry and signal accuracy. Evolution 51: 2050–2053.
Martin A, Kapan DD & Gilbert LE. 2010. Wing patterns in the mist. PLoS Genetics 6: 1–3.
Merrill RM, Naisbit RE, Mallet J & Jiggins CD. 2013. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies. Journal of Evolutionary Biology 26: 1959–1967.
Miller MA, Pfeiffer W & Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, GCE 2010.
Mullen SP. 2006. Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). Molecular Phylogenetics and Evolution 39: 747–758.
Müller F. 1879. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Transactions of the Entomological Society of London 1879: 20–29.
Munroe E. 1960. The Classification of the Papilionidae (Lepidoptera). Memoirs of the Entomological Society of Canada 92: 5–51.
Nadeau NJ, Whibley A, Jones RT, Davey JW, Dasmahapatra KK, Baxter SW, Quail MA, Joron MRHM, Joron MRHM, Blaxter ML, Mallet J, Jiggins CD, Ffrench-Constant RH, Blaxter ML, Mallet J & Jiggins CD. 2012. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 343–353.
Nadeau NJ, Martin SH, Kozak KM, Salazar C, Dasmahapatra KK, Davey JW, Baxter SW, Blaxter ML, Mallet J & Jiggins CD. 2013. Genome-wide patterns of divergence and gene flow across a butterfly radiation. Molecular Ecology 22: 814-826.
Naisbit RE, Jiggins CD & Mallet J. 2003. Mimicry: developmental genes that contribute to speciation. Evolution and Development 5: 269–280.
Naumann CM. 1987. On the phylogenetic significance of two miocene zygaenid moths (insecta, lepidoptera). Paläontologische Zeitschrift 61: 299–308.
Naumann CM & Feist R. 1987. The structure and distribution of cyanoglucoside-storing cuticular cavities in Pryeria sinica Moore (Lepidoptera, Zygaenidae). Zoologica Scripta 16: 89–93.
Nel A, Nel J & Balme C. 1993. Un nouveau Lépidoptère Satyrinae fossile de l’Oligocène du sud-est de la France (Insecta, Lepidoptera, Nymphalidae). Linneana Belgica 14: 20–36.
Nicholson AJ. 1927. A new theory of mimicry in insects. Australian zoologist 5: 10–104.
Niehuis O, Yen SH, Naumann CM & Misof B. 2006. Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence. Molecular Phylogenetics and Evolution 39: 812–829.
Oliver JC & Prudic KL. 2010. Are mimics monophyletic? The necessity of phylogenetic hypothesis tests in character evolution. BMC evolutionary biology 10: 239.
Owen DF. 1970. Mimetic polymorphism and the palatability spectrum. Oikos 21: 333–336.
Owen RE & Owen ARG. 1984. Mathematical paradigms for mimicry: recurrent sampling. Journal of Theoretical Biology 109: 217–247.
Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London B: Biological Sciences 255: 37–45.
Pegram KV., Han HA & Rutowski RL. 2015. Warning signal efficacy: assessing the effects of color, iridescence, and time of day in the field. Ethology 121: 861–873.
Peña C, Wahlberg N, Weingartner E, Kodandaramaiah U, Nylin S, Freitas AV, Brower AVZ. 2006. Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution 40: 29–49.
Peña C & Wahlberg N. 2008. Prehistorical climate change increased diversification of a group of butterflies. Biology Letters 4: 274–278.
Peñalver E & Grimaldi DA. 2006. New data on Miocene butterflies in Dominican amber (Lepidoptera: Riodinidae and Nymphalidae) with the description of a new nymphalid. American Museum Novitates: 1–17.
Pfennig DW, Harper GR, Brumo AF, Harcombe WR & Pfennig KS. 2007. Population differences in predation on Batesian mimics in allopatry with their model: selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology 61: 505–511.
Pfennig DW & Mullen SP. 2010. Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes. Proceedings of the Royal Society of London B: Biological Sciences 277: 2577–2585.
Poulton EB. 1909. Mimicry in the butterflies of North America. Annals of the Entomological Society of America 2: 203–242.
Prudic KL & Oliver JC. 2008. Once a Batesian mimic, not always a Batesian mimic: mimic reverts back to ancestral phenotype when the model is absent. Proceedings of the Royal Society of London B: Biological Sciences 275: 1125–1132.
Punnett RC. 1915. Mimicry in butterflies. Cambridge: Cambridge University press.
Rajapakse RHS & Kulasekera VK. 1982. Some observations on the insect pests of cinnamon in Sri Lanka. Entomon 7: 221–223.
Rajapakse RHS & Kumara KLW. 2007. Review of identification and management of pests and diseases of cinnamon (Cinnamomum zeylanicum Blume). Tropical Agricultural Research and Extension 10: 1–10.
Rambaut A, Suchard MA, Xie D & Drummond AJ. 2014. Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer.
Reed RD & Sperling FAH. 1999. Interaction of process partitions in phylogenetic analysis: an example from the swallowtail butterfly genus Papilio. Molecular Biology and Evolution 16: 286–297.
Rettenmeyer CW. 1970. Insect Mimicry. Annual Review of Entomology 15: 43–74.
Ronquist F, Teslenko M, van derMark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA & Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61: 539–542.
Rothschild M, Aplin R, Cockrum P & Edgar J. 1979. Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biological Journal of the Linnean Society 12: 305–326.
Ruxton GD, Sherratt TN & Speed SP. 2004. Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. , New York: Oxford University Press.
Savage WK & Mullen SP. 2009. A single origin of Batesian mimicry among hybridizing populations of admiral butterflies (Limenitis arthemis) rejects an evolutionary reversion to the ancestral phenotype. Proceedings of the Royal Society of London B: Biological Sciences 276: 2557–2565.
Shaak SG & Counterman BA. 2017. High warning colour polymorphism in Heliconius hybrid zone roosts. Ecological Entomology 42: 315–324.
Sheppard PM. 1959. The evolution of mimicry; a problem in ecology and genetics. Cold Spring Harbor Symposia on Quantitative Biology 24: 131–140.
Sheppard PM, Turner JRG, Brown KS, Benson WW & Singer MC. 1985. Genetics and the evolution of Müllerian mimicry in Heliconius Butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences 308: 433–610.
Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51: 492–508.
Shimodaira H & Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.
Simmons RB & Weller SJ. 2002. What kind of signals do mimetic tiger moths send? A phylogenetic test of wasp mimicry systems (Lepidoptera: Arctiidae: Euchromiini). Proceedings of the Royal Society of London B: Biological Sciences 269: 983–990.
Simonsen TJ, Zakharov EV., Djernaes M, Cotton AM, Vane-Wright RI & Sperling FAH. 2011. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27: 113–137.
Singh V, Dubey OP, Nair CPR & Pillai GB. 1978. Biology and bionomics of insect pests of cinnamon. Journal of Plantation Crops 6: 24–27.
Speed MP. 1993a. When is mimicry good for predators? Animal Behaviour 46: 1246–1248.
Speed M. 1993b. Müellerian mimicry and the psychology of predation. Animal Behaviour 45: 571–580.
Speed MP & Turner JRG. 1999. Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biological Journal of the Linnean Society 67: 281–312.
Srygley RB & Chai P. 1990. Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia 84: 491–499.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
Swofford DL. 2002. PAUP*. Phylogenetic analysis using Parsimony (*and Other Methods). Version 4. Sunderland: Sinauer.
Tamura K, Stecher G, Peterson D, Filipski A & Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.
Thompson JD, Higgins DG & Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.
Tsao WC & Yeh WBin. 2008. DNA-based discrimination of subspecies of swallowtail butterflies (Lepidoptera: Papilioninae) from Taiwan. Zoological Studies 47: 633–643.
Tsukada E & Nishiyama Y. 1980. Butterflies of the South East Asian Islands 1: Papilionidae. Tokyo: Plapac.
Turini A, Veselý P & Fuchs R. 2016. Five species of passerine bird differ in their ability to detect Batesian mimics. Biological Journal of the Linnean Society 117: 832–841.
Turner JRG. 1984. The palatability spectrum and its consequences. In: Vane-Wright RI, Ackery PR. eds. The biology of butterflies. London: Academic, 140-160.
Turner JRG. 1987. The evolutionary dynamics of Batesian and Müellerian mimicry: similarities and differences. Ecological Entomology 12: 81–95
Turner JRG. 1995. Mimicry as a model for coevolution. In: Kato AM, Doi Y, eds. Biodiversity and evolution. Tokyo: National Science Museum Foundation, 131–150
Turner JRG, Johnson MS & Eanes WF. 1979. Contrasted modes of evolution in the same genome: allozymes and adaptive change in Heliconius. Proceedings of the National Academy of Sciences 76: 1924–1928.
Turner JRG, Kearney EP & Exton LS. 1984. Mimicry and the Monte Carlo predator: the palatability spectrum, and the origins of mimicry. Biological Journal of the Linnean Society 23: 247–268.
Umada H & Yata O. 2006. Comparative morphology of the genus Chilasa. Transactions of the Lepidoptera Society Japan 57: 34–42.
Vaidya G, Lohman DJ & Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180.
Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AVL & Brower AVZ. 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proceedings. Biological sciences / The Royal Society 276: 4295–4302.
Wahlberg N & Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology 57: 231–242.
Wahlberg N, Wheat CW & Peña C. 2013. Timing and patterns in the taxonomic diversification of Lepidoptera (Butterflies and Moths). PLoS ONE 8: e80875.
Wallace AR. 1865. I. On the phenomena of variation and geographical distribution as illustrated by the Papilionidae of the Malayan Region. Transactions of the Linnean Society 25: 1-71.
Wallace AR. 1867. Mimicry and other protective resemblances among animals. Westminster and Foreign Quarterly Review 32: 1–43.
Wallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, Mallet J, Dasmahapatra KK, Salazar C, Joron M, Nadeau N, McMillan WO & Jiggins CD. 2016. Evolutionary novelty in a butterfly wing pattern through enhancer shufflin. PLOS Biology 14: e1002353.
Wei CH & Yen SH. 2017. Mimaporia, a new genus of Epicopeiidae (Lepidoptera), with description of a new species from Vietnam. Zootaxa 4254: 537-550.
Whiting MF. 2002. Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31: 93–104.
Wickler W. 1968. Mimicry in plants and animals. New York: McGraw-Hill.
Witthohn K & Naumann CM. 1984. Qualitative and quantitative studies on the compounds of the larval defensive secretion of Zygaena trifolii (Esper, 1783) (Insecta, lepidoptera, zygaenidae). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 79: 103–106.
Wu LW, Yen SH, Lees DC, Lu CC, Yang PS & Hsu YF. 2015. Phylogeny and historical biogeography of Asian Pterourus butterflies (Lepidoptera: Papilionidae): a case of intercontinental dispersal from North America to East Asia. PLoS ONE 10: e0140933.
Yamamoto T, Yata O, Itioka T, Stages E & Tissue HA. 2000. Descriptions of the early stages of Chilasa paradoxa (Zinken, 1831) from northern Borneo (Lepidoptera: Papilionidae). Entomological science 3: 627–633.
Yang EJH. 2012. The effects of Pleistocene climatic change on the phylogeography of Euploea mulciber (Lepidoptera; Nymphalidae; Danainae). CUNY Academic Works
Yen SH. 2004. Phylogenetic reconstruction of the Chalcosiinae (Lepidoptera: Zygaenidae sensu lato). PhD Thesis, Imperial College London, Silwood Park Campus.
Yen SH, Robinson GS & Quicke DLJ. 2005a. Phylogeny, systematics and evolution of mimetic wing patterns of Eterusia moths (Lepidoptera, Zygaenidae, Chalcosiinae). Systematic Entomology 30: 358–397.
Yen SH, Robinson GS & Quicke DLJ. 2005b. The phylogenetic relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae). Zoological Journal of the Linnean Society 143: 161–341.
Zahiri R, Lafontaine JD, Schmidt BC, DeWaard JR, Zakharov EV. & Hebert PDN. 2014. A transcontinental challenge - a test of DNA barcode performance for 1,541 species of Canadian Noctuoidea (Lepidoptera). PLoS ONE 9: 1–12.
Zakharov E, Caterino M & Sperling F. 2004. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology 53: 193–215.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code