Responsive image
博碩士論文 etd-0704118-105436 詳細資訊
Title page for etd-0704118-105436
論文名稱
Title
應用於WLAN頻段之場型可調雙頻MIMO天線
A Pattern-Reconfigurable Dual-Band MIMO Antenna for WLAN Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-19
繳交日期
Date of Submission
2018-08-04
關鍵字
Keywords
頻率選擇表面、單極天線、多重輸入多重輸出天線、無線區域網路、場型可調
monopole antenna, FSS, MIMO antenna, WLAN, pattern-reconfigurable
統計
Statistics
本論文已被瀏覽 5691 次,被下載 42
The thesis/dissertation has been browsed 5691 times, has been downloaded 42 times.
中文摘要
近年來無線通訊技術發展迅速,能夠提供使用者更高速率的傳輸,以及更寬的頻寬,IEEE標準協會制定了新的無線網路標準802.11ac,此無線網路標準是透過5 GHz頻段來提供高通量的無線區域網路(WLAN),能夠支援最多8個多重輸入多重輸出(Multi-input Multi-output, MIMO)空間串流。因此在本論文中提出了適用於IEEE 802.11ac的MIMO天線,此MIMO天線可放置於室外無線基地台(access point, AP)中,利用低頻段的全向性場型提供Wi-Fi給移動中的使用者,在高頻段除了指向性場型還加入了場型可調(pattern-reconfigurable)的功能,本設計的場型切換功能是利用頻率選擇表面(frequency selective surface),能夠提供靜止的裝置與裝置之間高資料傳輸率(throughput)的點對點的傳輸。
首先提出能夠操作於2.4 GHz以及5 GHz頻段的偶極天線(dipole antenna),利用一天線本身的迴圈(loop)結構反射高頻輻射場型,使天線擁有低頻全向性和高頻指向性的輻射場型。接著在天線下方置放一接地面,將雙極天線結構等效為單極天線(monopole antenna);第二部分提出一MIMO天線,將單極天線的結構於接地面上方鏡射,並且共用兩天線用來反射高頻場型的迴圈結構,以及加大接地面使MIMO天線操作頻段與單天線相同,也依然擁有高低頻的全向性以及指向性場型;第三部分為提出增加低頻隔離度(isolation)的方法,因為經過鏡射後的MIMO天線低頻單極天線距離小於半個波長,在阻抗匹配以及輻射場型上會有干擾的情況。因此參考文獻,在天線接地面上設計接地面電流扼流結構(ground current choke),連接上層的金屬結構以及下層的槽孔結構形成一電感電容諧振電路,改善隔離度。第四部份在MIMO天線兩側天線加上頻率選擇表面,並在頻率選擇表面上加上PIN二極體(PIN diode),使頻率選擇表面可切換為穿透板或是反射板,因此每一個天線皆能有三種輻射場型可切換,並且在低頻擁有全向性場型。
Abstract
In recent years, the development of the wireless communication systems have grown rapidly. The higher the data rate and the wider the bandwidth can be provided to users. The IEEE’s newer wireless local area network (WLAN) standard, 802.11ac, is used for providing high throughput WLAN at 5 GHz band. It is also capable of supporting up to 8 MIMO spatial streams. In this thesis, a Multi-Input Multi-Output (MIMO) antenna suitable for 802.11ac standard is proposed. This MIMO antenna can be placed in an outdoor access point(AP) to give Wi-Fi for moving users by using the omni-directional radiation pattern in the lower band. In the higher band, the antenna has the directional radiation pattern and the function of pattern reconfigurability in the higher band by using frequency selective surfaces (FSS). The high throughput can be provided by means of Peer to Peer (P2P) transmission to the devices.
Firstly, a dual-band dipole antenna operating at 2.4 GHz and 5 GHz is designed. This antenna has the omni-directional pattern at the lower band and directional pattern at the higher band. In the antenna design, a loop structure can reflect the radiation pattern in the higher band. By placing a ground structure perpendicular to the antenna, the dipole antenna becomes a modified monopole antenna. Secondly, a MIMO antenna is formed by mirror duplicating the existing monopole. Thirdly, the solution of the isolation problem in the lower band is proposed. A current choke is designed on the top and bottom sides of the substrate of the ground to improve the isolation. It is equivalent to an LC resonator by a patch on top side connected to a slot on bottom side. Fourthly, the four FSS with PIN diodes are placed beside the MIMO antenna to either act as reflectors or to remain non-reflective. Three radiation patterns of each port can be steered at 5.8 GHz, and the omni-directional radiation pattern at 2.4 GHz.
目次 Table of Contents
論文審定書i
碩士論文公開授權書ii
致謝iii
摘要v
Abstract vi
目錄viii
圖次x
表次xiv
第一章 緒論1
1.1 研究背景與動機1
1.2 文獻回顧2
1.3 研究方法3
1.4 研究目標3
第二章 雙頻MIMO天線設計5
2.1 偶極及單極天線介紹5
2.2 雙頻天線設計8
2.3 雙頻MIMO天線設計18
2.4 雙頻MIMO天線隔離度增強25
第三章 場型可調雙頻MIMO天線35
3.1 頻率選擇表面介紹35
3.2 場型可調天線設計36
第四章 天線實作及量測45
4.1 天線之S參數量測45
4.2 天線場型量測48
4.3 MIMO天線封包相關係數量測53
第五章 結論57
參考文獻58
參考文獻 References
[1] http://ensura.com/smart-lights/
[2] H. L. Zhu, S. W. Cheung, and T. I. Yuk, “Mechanically pattern reconfigurable antenna using metasurface,” IET Microw., Antennas Propag., vol. 9, no. 12, pp. 1331–1336, Sep. 2015.
[3] M. Barba, J. E. Page, J. A. Encinar, and J. R. Montejo-Garai, “A switchable multiple beam antenna for GSM-UMTS base stations in planar technology,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pp. 3087–3094, Nov. 2006.
[4] M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler matrix using CPW multilayer technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 499–507, Jan. 2006.
[5] G. H. Huff and J. T. Bernhard, “Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas,” IEEE Trans. Antennas Propagat., vol. 54, no. 2, pp. 464–469, Feb. 2006.
[6] M. R. Islam and M. Ali, “A 900 MHz beam steering parasitic antenna array for wearable wireless applications,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4520–4527, Sep. 2013.
[7] J. J. Luther, S. Ebadi, and X. Gong, “A microstrip patch electronically steerable parasitic array radiator (ESPAR) antenna with reactance-tuned coupling and maintained resonance,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1803–1813, Apr. 2012.
[8] P. Y. Qin, Y. J. Guo, and C. Ding, “A beam switching quasi–Yagi dipole antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 4891–4899, Oct. 2013.
[9] M. Donelli, R. Azaro, L. Fimognari, and A. Massa, “A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 623–626, 2007.
[10] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, 2nd ed., Wiley, 1997.
[11] K. G. Thomas and M. Sreenivasan, “A simple dual-band microstrip-fed printed antenna for WLAN applications,” Microw. Antennas Propag., vol. 3, pp. 687–694, 2009.
[12] C. Huang and E. Yu, “A slot-monopole antenna for dual-band WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 500–502, 2011.
[13] Yu Zhang and Zengrui Li, “A dual-band quasi-Yagi antenna with double-dipole driver,” Microwave, Antenna, Propagation, and EMC Technologies (MAPE) 2015 IEEE 6th International Symposium on, pp. 123-125, 2015.
[14] G. J. Foschini, M. J. Gans, “On On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas,” Wireless Personal Commun., vol. 6, pp.311-335, Feb. 1998.
[15] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, no. 9, pp. 705–707, 2003.
[16] Rohde amd Schwarz, “An Introduction to MIMO Systems,” Application notes, 1MA102
[17] J. Park, J. Choi, J. Y. Park, and Y. S. Kim, “Study of a T-shaped slot with a capacitor for high isolation between MIMO antennas,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1541–1544, 2012.
[18] M. Gulam Nabi Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 15–18, 2013.
[19] M. S. Khan, M. F. Shafique, A. Naqvi, A. D. Capobianco, B. Ijaz, and B. D. Braaten, “A miniaturized dual-band MIMO antenna for WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 958–961, 2015.
[20] C. H. Lee, S. Y. Chen, and P. Hsu, “Integrated dual planar inverted-F antenna with enhanced isolation,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 963–965, 2009.
[21] T.-W. Kang and K.-L. Wong, “Isolation Improvement of 2.4/5.2/5.8 GHz WLAN Internal Laptop Computer Antennas Using Dual-Band Strip Resonator as a Wavetrap,” Microw. Opt. Technol. Lett., vol. 52, pp. 58–64, 2010.
[22] P. Rezai, A. Valizade, J. Nourinia, M. Solimanejad, F. Alizadeh, B. Mohammadi, “Design of a triple-band compact microstrip monopole antenna using multiple bent-lines with low correlation for MIMO applications", Electrical Engineering (ICEE) 2016 24th Iranian Conference on, pp. 768-771, 2016.
[23] Cai-Yi Lui, Yu-Shin Wang, and Shyh-Jong Chung, "Two Nearby Dual-Band Antennas with High Port Isolation", Antennas and Propagation Society International Symposium 2008. AP-S 2008. IEEE, pp. 1-4, 2008.
[24] Qingyuan Liu, Zhengwei Du, Ke Gong, and Zhenghe Feng, “A Compact Wideband Planar Diversity Antenna for Mobile Handset,” Microwave Opt. Technol. Lett., vol. 1, no. 1, Jan. 2008.
[25] Y.-S. Wang, J.-C. Lu, and S.-J. Chung, “A miniaturized ground edge current choke—Design, measurement, and applications,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 1360–1366, May 2009.
[26] Ben A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
[27] A. Chatterjee, and S. K. Parui, “Performance Enhancement of a DualBand Monopole Antenna by Using a Frequency-Selective Surface-Based Corner Reflector,” IEEE Transactions on Antennas and Propagation, Vol. 64, pp. 2165-2171, 2016.
[28] J. P. Gianvittorio, J. Romeu, S. Blanch, and Y. Rahmat-Samii, “Selfsimilar pre-fractal frequency selective surfaces for multiband and dualpolarized applications,” IEEE Trans. Antennas Propag., vol. 51, no. 11, pp. 3088–3096, Nov. 2003.
[29] J. Romeu and Y. Rahamat-Samii, “Fractal FSS: A novel dual-band frequency selective surface,” IEEE Trans. Antennas Propag., vol. 48, no. 7, pp. 1097–1105, Jul. 2000.
[30] B. Liang, B. Sanz-Izquierdo, J. C. Batchelor, and A. Bogliolo, “Active FSS enclosed beam-switching node for wireless sensor networks,” in European Conference on Antennas and Propagation, 2014.
[31] A. Edalati and T. A. Denidni, “Frequency selective surfaces for beamswitching applications,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 195–200, Jan. 2013.
[32] Bin Liang, Benito Sanz-Izquierdo, Edward A. Parker, and John C. Batchelor, “Cylindrical Slot FSS Configuration for Beam-Switching Applications”, IEEE Trans. Antennas Propag., Vol.63, No. 1, pp 166- 173, January 2015.
[33] Hoang Thi Phuong Thao, Vu Thanh Luan, and Vu Van Yem, “Design of Compact Frequency Reconfigurable Planar Invert-F Antenna for Green Wireless Communications,” IET Commun., vol. 10, iss.18, pp. 2567-2574, 2016.
[34] http://www.skyworksinc.com/uploads/documents/200046M.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code