Responsive image
博碩士論文 etd-0705100-154834 詳細資訊
Title page for etd-0705100-154834
論文名稱
Title
1.以模場生物滴濾塔處理含異辛醇排氣之操作性能研究 2.以實場生物滴濾塔處理合成樹脂廠排氣之操作性能研究
1.Treatment of 2-Ethyl Hexanol in an air stream by a pilot-scale Biotrickling Filters. 2.Treatment of gaseous VOC emissions from a resin manufacturing plant by a full-scale Biotrickling Filters.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-07
繳交日期
Date of Submission
2000-07-05
關鍵字
Keywords
生物滴濾塔、異辛醇、合成樹脂廠
VOC emission, biotrickling filter, 2-Ethyl Hexanol
統計
Statistics
本論文已被瀏覽 5687 次,被下載 3010
The thesis/dissertation has been browsed 5687 times, has been downloaded 3010 times.
中文摘要
本實驗分成兩部份,包括模場處理含異辛醇之氣體及實場處理樹脂製程之排廢氣。茲分述如下:
模場生物滴濾塔處理含異辛醇廢氣
異辛醇(2-EH)是2-ethyl hexand簡稱,為PVC可塑劑DOP (Di-isooctyl phthalate)製造之主要原料,然而,在PVC合成皮或手套製造過程中,2-EH可能因DOP之熱分解而逸出。
以中鋼爐岩為濾材之濾塔(內徑為19.5 cm,共兩座串聯,濾材總高2.5 m,總氣液接觸表面積8.96 m2)在未經特殊植種,固定添加營養鹽。
循環水流速為8.83 m3/m2h,pH調整在8左右時,研究結果顯示植種後一星期,即可觀察到爐石表面黃褐色生物膜之生成,約兩星期後生物膜已生長成一定厚度。
在不同定風量操作下,系統如為質傳控制下異辛醇負荷(L)< 10 g/m3h時,去除率可達97%左右。
未加營養鹽及不換循環水之三天試驗中,微生物活性降低,使分解能力及去除率降為零,表示當生物滴濾塔停止添加營養鹽時,且無排換循環水時,應該避免含污染物之排氣進入,否則會造成生物膜的剝落及毒化。
在Uo = 162 m3/m2h、GRT = 55 s 之操作條件下,異辛醇Co < 250 mg/m3 (L < 16.33 g/m3h)時,體積分解能力(K)均正比於體積有機負荷(L)值,系統為質傳控制;而在Co>250 mg/m3 (L > 16.33 g/m3h)時,去除效率逐漸下降,系統逐漸轉變為反應控制,負荷再加高,體積去除能力(K值)趨於定值,亦即最大體積去除能力。異辛醇在生物滴濾塔此控制參數條件操作下,L、K關係式K=71.9 L/(72.4+L),相關係數R值為0.9988。
實場生物滴濾塔處理樹脂廠排氣
台南縣佳里鎮華寶樹脂化學工廠有限公司從事聚胺基甲酸酯(PU) 、聚醋酸乙烯酯(PVAC) 、聚苯乙烯(PS)乳液、壓克力(PMMA)乳液等樹脂製造,其製程排氣含甲苯(toluene) 、丁酮(MEK) 、丙酮(acetone) 、醋酸乙烯(VAM) 、苯乙烯(SM) 、丙烯酸丁酯(BA) 、氫氧乙基醋酸酯(2 - ethyl hydroxyl acetate, 2-EHA) 、甲基丙烯酸甲酯(MMA)等揮發性有機物。
以棧板木片為濾材之濾塔(內徑為7 m、濾料高4 m,總氣液接觸表面積14969 m2,)在未經特殊植種,固定添加營養鹽,循環水流速為1.56 m3/m2h,pH調整在7~8間時,研究結果顯示植種後一星期,即可觀察到棧板木片上黃褐色生物膜之生成,約兩星期後生物膜已生長成一定厚度。
在不同負荷濃度下(低、高、突增濃度負荷)操作下,VOCs去除率分別可達71.5 %、88.4 %、62.8 %,顯示以生物滴濾塔處理樹脂廠反應器排氣中之各種污染物具有可行性。
此實驗知道循環水在啟動一小時,停止一小時之操作模式下,尚不造成影響,可以此進行實場操作。
由實驗可知道,樹脂廠排放廢氣中各VOC之成分污染物在生物滴濾塔去除分解情形,均可達到84 %以上。但甲苯之去除率需加強。可以考慮加強馴養針對此不易分解污染物之微生物,來解決此問題。
在樹脂廠排放之VOCs有機負荷(L)< 45 g/m3h,體積分解能力(K)均正比於L值,系統為質傳控制。實場各負荷試驗下,樹脂排氣在生物滴濾塔之L、K關係式K=344.8*L/(467.3+L);其相關係數R值為0.9913。

Abstract

The subject of this thesis is divided into two parts: (1) Treatment of 2-ethyl hexanol (2-EH) in an air stream by a pilot-scale biotrickling filter, and (2) Treatment of gaseous VOC emissions from a resin manufacturing plant by a full-scale biotrickling filter.
Treatment of 2-Ethyl Hexanol in An Air Stream by A Pilot-Scale Biotrickling Filter
2-Ethyl Hexanol (2-EH) may release from the thermal breakdown of di-isooctyl phthalate (DOP), a commonly-used plasticizer, in the curing stage when manufacturing PVC synthetic leather and gloves.
This paper reports the results of studies using a biotrickling filter (BTF) with blast-furnace slag packings (sizes = 2-4 cm and specific surface area = 120 m2/m3) for treatment of 2-EH in an air stream. The experimental setup consisted of a set of two-stage-in-series biotrickling filters. Each stage of the biotrickling filter was constructed from a 19.5-cm x 200-cm (ID x H) acrylic column packed with slags of 125 cm in height. The operation started with the conditions of recirculation liquid pH = 8.0 and rate (VL) = 8.83 m3/m2.h, a steady nutrient (ammonia nitrogen and phosphate phosphorus) addition, and without a special microbial seeding. Results indicate that, yellowish-brown biofilms on the surface of packing slags could be observed in one week and well developed in two weeks after the start-up operation.
The effects of volumetric 2-EH loading (L) and superficial gas velocity (U0) on the 2-EH elimination capacity (K) and the removal efficiency (K/L) were tested.
Long-term experimental results show that, in the conditions of influent 2-EH concentration C0 = 250 mg/m3, U0 = 162 m3/m2.h, and gas empty-bed-retention time EBRT = 55 s, K/L could be correlated by the equation K/L = 71.9/(72.4+L) with a correlation coefficient (R) of 0.9988. The 2-EH elimination rate was mass-transfer controlled when L<16 g/m3.h and reaction-controlled when L>16 g/m3.h. Results also indicate that nutrient addition and liquid recirculation were important for the normal operation of the BTF in eliminating the influent 2-EH.
Treatment of Gaseous VOC Emissions from A Resin-Manufacturing Plant by A Full-Scale Biotrickling Filter
A resin and chemical company located in Tainan County, Taiwan engages in the manufacture of PU (poly urethane), PVAC (poly vinyl acetate), PS (poly styrene), and PMMA (poly methyl methacrylate) resins from various chemical stocks. Gaseous volatile organic compounds (VOCs) emitted from the reactors include toluene, methyl ethyl ketone (MEK), acetone, vinyl chloride, styrene, butyl acetate, 2-ethyl hydroxyl acetate, and methyl methacrylate. These VOCs should be properly eliminated before discharging the reactor vents to the atmosphere.
This paper reports the performance results of using a biotrickling filter (BTF) with wood packings (sizes = 2-12 cm and specific surface area = 97 m2/m3) for treating the reactor vents with a total flowrate of 80 m3/min at 20-30℃. The BTF was constructed from a 7.0 m x 6.0 m (ID x H) SUS 304 column with wood packings of 4.0 m in height. The operation started with the conditions of recirculation liquid pH = 7.0-8.0 and rate (VL) = 1.56 m3/m2.h, a steady nutrient (urea and phosphate phosphorus) addition, and without a special microbial seeding. Results indicate that, yellowish-brown biofilms on the surface of packings could be observed in one week and well developed in two weeks after the start-up operation.
Long-term operation results show that, in the conditions of influent VOC concentration C0 = 200-10000 ppm (expressed in terms of methane), U0 = 125 m3/m2.h, and gas empty-bed-retention time EBRT = 115 s, K/L could be correlated by the equation K/L = 345/(467+L) with a correlation coefficient (R) of 0.9913. The VOC elimination rate was mass-transfer limited when L<45 g/m3.h, with the mass of VOCs expressed as that of methane. Results also indicate that the liquid recirculation might be interrupted for a hour without influencing the performance. Toluene was the most difficult one to eliminate among the VOCs in the gas stream.
目次 Table of Contents
目錄

謝誌 Ⅰ
摘要 Ⅱ
Abstract Ⅳ
目錄 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ


第一章 前言 1
1.1 研究緣起 1
1.2 VOCs處理方法 1
1.3 研究目的 10
1.3.1 模場生物滴濾塔處理含異辛醇廢氣 10
1.3.2 實場生物滴濾塔處理樹脂廠排氣 10

第二章 文獻回顧 12
2.1 VOC簡介 12
2.1.1 異辛醇之理化特性及危害 12
2.1.2 樹脂工廠中VOCs各成分之理化特性及危害 12
2.2 生物處理法簡介 15
2.3 生物濾床法 18
2.3.1 原理概述 18
2.3.2 設計參數及文獻回顧 21
2.3.3 操作管理上的問題 26
2.4生物滴濾塔法 28
2.4.1 原理概述 28
2.4.2 設計參數及文獻回顧 30
2.4.3 生物滴濾塔文獻回顧摘要 35
2.4.4 操作管理上的問題 38

第三章 實驗設備 研究方法 40
3.1 實驗設備 40
3.1.1 模場處理含異辛醇廢氣 40
3.1.2 實場處理樹脂廠廢氣 41
3.2 實驗材料 46
3.2.1 藥品 46
3.3 微生物馴養 47
3.3.1 模場滴濾塔處理含異辛醇廢氣 47
3.3.2 實場滴濾塔處理樹脂廠排氣 47
3.4 分析方法 49
3.4.1 模場滴濾塔分析分法 49
3.4.2 實場滴濾塔分析分法 50
3.4.3 各操作參數意義 51
3.5 試驗項目及方法 52
3.5.1 模場滴濾塔處理含異辛醇排氣之操作項目 52
3.5.2 實場滴濾塔處理樹脂廠排氣之操作項目 53

第四章 反應機制與動力學模式 54

第五章 結果與討論 58
5.1 模場滴濾塔處理含異辛醇廢氣 58
5.1.1 定氣體空塔流速對異辛醇分解操作之影響 58
5.1.2 無換水及無營養鹽加入對生物滴濾塔去除異辛醇的影響 59
5.1.3 反應動力學模式之探討 60
5.2 實場滴濾塔處理樹脂廠排氣 60
5.2.1 體積分解能力探討: 61
5.2.2 短時間無循環水對去除率的影響 61
5.2.3 各成分污染物去除能力之探討 62
5.2.4 實場生物滴濾塔處理樹脂廠之動力模式探討 62

第六章 結論與建議 73
6.1 結論 73
6.1.1 模場處理異辛醇 73
6.1.2 實場處理樹脂廠廢氣 74
6. 66.2 建議 75

參考文獻 77

附錄一 異辛醇檢量線 83
附錄二 模場生物滴濾塔處理異辛醇之原始數據 84
附錄三 模場生物滴濾塔處理樹脂廠製程排氣原始數據 89
附錄四 實場生物滴濾塔數據取點 141
附錄五 樹脂廠排放廢氣中各VOC分析 142
附錄六 求取棧板木塊濾料之填充孔隙及比表面積 145
附錄七 相片 146

表目錄
表1-1 國內外行業別VOCs及臭味成分概要 3
表1-2 揮發性有機物廢氣之控制技術 9
表2-1 異辛醇之理化性質及危害性資料 13
表2-2 供試樹脂工廠廢氣中VOCs的物化特性 14
表2-3 適用生物處理之排氣中揮發性有機物 17
表2-4 為三種VOCs生物處理法之比較 18
表2-5 以生物濾床處理各種污染物之文獻摘要 23
表2-6 氣液接觸方式所造成影響之研究回顧 30
表2-7 填充物質所造成影響之研究回顧 30
表2-8 液體流速所造成影響之研究回顧 31
表2-9 氣體空塔流速所造成影響之研究回顧 32
表2-10 溫度所造成影響之研究回顧 33
表2-11目標污染物所造成影響之研究回顧 34
表2-12 pH值所造成影響之研究回顧 34
表2-13 其他操作條件所造成影響之研究回顧 35
表2-14 生物滴濾塔處理各種污染物 36
表3-1 模場濾材性質 42
表3-2 實場濾材性質 42
表3-3 供試合成樹脂廠廢氣收集及實場生物滴濾塔規格及數量 43
表3-4 模場生物滴濾塔每日需添加營養鹽之組成成份(生物膜 培養期間) 47
表3-5 實場生物滴濾塔生物膜培養期間每日所添加之營養鹽 48
表3-6 模場生物滴濾塔試驗計劃表 52
表3-7 實場生物滴濾塔試驗計劃表 53
表5-1 低濃度負荷、高濃度負荷、突增濃度判斷原則 61
表5-2 循環水在啟動一小時,停止一小時之前後比較 62
表5-3 樹脂廠排放廢氣中各VOC成分去除分解概況 68
圖目錄
圖1-1 含揮發性有機物排氣處理費用比較及適用處理方法 8
圖2-1 生物濾床廢氣處理系統示意圖 20
圖2-2 生物滴濾塔示意圖 29
圖3-1 模場生物滴濾塔試驗設備 44
圖3-2 實場生物滴濾塔試驗設備 45
圖4-1 污染物在三相傳輸模式 54
圖5-1-1 2-EH去除模場試驗,L與K關係圖 (147 s) 64
圖5-2-2 2-EH去除模場試驗,循環水中2-EH濃度與(L-K)關 係圖 (147 s) 64
圖5-1-3 2-EH去除模場試驗,L與K關係圖 (GRT=109 s) 65
圖5-1-4 2-EH去除模場試驗,循環水中2-EH濃度與(L-K)關 係圖(GRT=109 s) 65
圖5-1-5 2-EH去除模場試驗,L與K關係圖 (GRT=55 s) 66
圖5-1-6 2-EH去除模場試驗,循環水中2-EH濃度與(L-K)關 係圖(GRT=55 s) 66
圖5-1-7三日不加營養鹽無換水情況下,去除率及循環水中 2-EH含量 67
圖5-1-8 Uo=162 m/h,之(1/L)及(1/K)關係圖 67
圖5-2-1 樹脂廠排廢氣試驗,低濃度負荷,L與K關係圖 69
圖5-2-2 樹脂廠排廢氣試驗,高濃度負荷,L與K關係圖 69
圖5-2-3 樹脂廠排廢氣試驗,突增濃度負荷,L與K關係圖 70
圖5-2-4 樹脂廠排廢氣試驗,全部濃度負荷資料之L與K關 係 70
圖5-2-5 一般操作之進出口情況 71
圖5-2-6 停止循環水之進出口狀況 71
圖5-2-7 回覆一般操作之進出口情形 71
圖5-2-8 實場生物滴濾塔處理樹脂廠之(1/L)與(1/K)關係圖 72
參考文獻 References
參考文獻

1. 行政院環境保護署譯,1988.6,惡臭防制技術參考
手冊(Ⅱ),環保通訊雜誌社出版。

2.李季眉、姜法青,1997.6,“以生物濾床處理VOCs廢氣之生物相與動力研究”碩士論文,國立中興大學環境工程研究所。

3.行政院環境保護署譯,1988.6,惡臭防制技術參考
手冊(Ⅲ),環保通訊雜誌社出版。

4.樓基中、蔡文立,1990.4 “以吸收生物分解法處理臭味廢氣”,工業污染防治,Vol 34。

5.Hannah, S.A., B.M. Austerr ,A.E. Eralp ,and R.A. Dobbs ,(Feb.1988), "Removal of organic toxic pollutants by triching filter and activated
sludge ,” J. Water Pollut. Control , Vol.60 , p.1281-1283.

6.Ottengraf S.P.P ,(1986), “Exhaust Gas Purification,” H.J. Rehm ;
G.Reed ,Eds ,in Biotechnology , Vol.8 , p.427-452.

7.陳家勳,1995.6,“生物濾床法處理含乙醇及丙酮之研究”,國立中興大學環境工程系所,碩士論文,台灣:台中。

8.Leson , G. Dharmavaram S.; June 18-23 ,(1995),“A status overview of
biological air pollution control,” 88th Annual Meeting & Exhibition ,
Air & Water Managerment Association, San Antonio ,Texas.

9.Kirchner.K and Wagner.S., June 19-24(1994),“Biological Purification of
Waste Gases by Means of Immobilised bacteria (Monocultures)” In
Proceedings of the 87th Annual Meeting & Exhibition of Air & Water
Management Association ,Cininnate , Ohio.

10.Modge Douglas S; Devinny joseph S.,(1997), “Determination of
Transfer Rate Constants and partition Coefficients for Air Phase
Biofilters,” Vol.123 No.6 , p.577-585.

11.Gust M.; Grochowski H.; Schire S. ,(1979) , Statub Reinhalt Luft ,
Vol.39 , p.397.

12.Leson, G. and A. M. Winer ,(1991), “bilfiltration : an introduction air
pollution control technology for VOC emissions,” J. Air Waster
Manage. Assoc., 41(8):1045-1054.

13.Ottengrf, S.P.P ,(1986), “Exhaust gas purification,” pp.425-451,
in:Rehm, H. J. & Reed, G. (eds), Biotechnology, 8 ,VHC, Weinheim.

14.周明顯,吳世霖,1995.6,“以生物濾床法處理排氣中二甲基醯胺之操作性能研究”,第十二屆空氣污染技術研討會論文集,pp.640-
647。

15.Helmer,R ; Stuttg, Ber. Munich (1972), Siedlungswasser-wirtsch. 49.
Oldenbourg Verlag.

16.Visscher,K ; Cornelisse,A.H.; Van Lohuizen, Dutch (1979), C.J. PT
Proc. Tech. 34.575.

17.Ottengraf, S.P.P.; van den Oever,A.H.C.(1983), “Kinetics of organic
compound removal from waste gases with a biological filter,”
Biotechnol. Bioeng. Vol.25 ,p.3089-3102.

18.Dragt,A.J;Ottengraf,S.P.P. ,(1985),“Symp. Biological Off-gas Treatment of the working Party Environmental Biotechology,”Basel Switzerland.

19.Van Lith, C.P.M; Ottengraf, S.P.P. ; Osinga,B; Diks, R.M.M., June 13-
18 ,(1993), “The biological purification of a multi-component waste-
gas discharged in artificial glass production,” 86th annual Meeting &
Exhibittion, Air & Waste Management Assoc., Denver, Colorodo.

20.Leson, G., D. S. Hodge, F. Tabatabai and A. M. Winer,(1993),
“biofilter demonstration projects for the control of ethanol
emission,”Air and Waster Managenment Association, for presentation
at the 86th Annual Meeting and Exhibition ,Denver, Colorado.

21.Ergas, S.J.; Schroeder, E.D.; Chang, D.P.Y, June 13-18, (1993),
“Crotrol of airemission of dichloromethane, trichloroethene, and
toluene by biofiltration,” 86th Annual Meeting & Exhibition, Air &
Waste Management Association, Denver , Colorodo.

22.Kardono; Allen, E.R., June 19-24 ,(1994), “Biofiltratiion control of
volatile hydrocarbon emissions: n-Butane,”87th Annual Meeting &
Exhibition, Air & Waste Management Association, Cincinnati , Ohio.

23.Leson,G.; Chavira,R.; Winer,A.; Hodge,D. , June 18-23,(1995),
“Experinces with a full-scale biofilter for control of ethanol
emissions,” 88th Annual Meeting & Exhibition, Air & Waste
Management Association, San Antonio, Texas.

24.Sorial, G.A.; Smith, F.L.; Pandit, A.; Suidan, M.T; Biswas, P.; Brenner,
R.C., June 18-23,(1995), “Performance of trickle bed biofilters under
high toluene loadjng,” 88th Annual Meeting & Exhibition, Air &
Waste Management Association, San Antonio,Texas.

25.Kardono ; Allen, E.R., June 18-23,(1995), “Elimination of benzene
using a comopst biofilter,” 88th Annual Meeting & Exhibition, Air &
Waste Management Association, San Antonio ,Texas.

26.Morgenroth, E.; Schroeder, E.D.; Chang, D.P.Y.; Scow, K.M.,June
18-23,(1995), “Nutrient limitation in a compost biofilter degrading
hexane,” 88th Annual Meeting & Exhibition, Air & Waste
Management Association, San Antonio ,Texas.

27.蕭智乾,1997.6,“以生物滴濾塔處理排氣中八碳烯烴之研究” 碩士論文,國立中山大學環境工程研究所。

28.Jurgen,L.,June 18-23,(1995), “Biological Elimination of odoriferous
pollutants and solvent in waste gas with the biotrikling filter,”88th
Annual Meeting & Exhibition, Air & Waste Management Association,
San Antonio ,Texas.

29.Loy, J.,June 18-23,(1995), “Biological elimination of odoriferous
pollutants and solvents in waste gas with the biotrickling filter,” 88th
Annual Meeting & Exhibition, Air & Waste Management Association,
San Antonio ,Texas.

30.Diks, R.M.M. and S.P.P. Ottengraf,(1991), “Verification Studies of a
Simplified Model for the removal of Dichloromethane from Waste
Gasses Using a Biological Trickling filter (Part I),” Bioprocess Eng,
VOL.6, pp.93-99.

31.Ockeloen, H.F.,Overcamp, T.J., and Grady ,C.P.L,(1992),“A Biological
Fixed-Film Simulation Model for Removal of Volatile Organic
Pollutants,”A&WMA, Proc.86th Annual Meeting & Exhibition ,
92-116.05.

32.Shigeki Yamashita , Mashayoshi Kitagawa , June 14-18,(1998),
“Removal of Toluene and Benzene from Flue Gas by a Biotrickling
Filtration System which uses an Urethane Foam Filter,” In
Proceedings of the 91st Annual Meeting&Exhibition of Air&Waste
Management Association, MPC.06PA1089,San Diego.

33.Kirchner, K., U. Schlachter and H.J. Rehm,(1989), “Biological
purification of Exhaust Air Using Fixed Bacterial Mouocultrues,”
Appl Microbiol.Biotechnol ,Vol.31,p.629-632.

34.Kuter, G.A. , Harper, J.E. ,Naylor, L.M., and Gormsen, P.J.,(1993),
“Design,Construction and Operation of Biofilter for Controlling odors
at Composting Facilities,”A&WMA,Proc.86thAnnual Meeting
&Exhibition, 93-WP-52C.02.

35.Sorial, G. A., F.L. Smith, M.T. Suidan and Pratim Biswas,(1995),
“Evaluation of Trickle Bed Biofilter Media for Toluene Removal,”
J.Air Waste Manage .Assoc.,Vol 45,p.801-810.

36.周明顯、吳非隆,1995.6,“以生物滴濾塔處理排氣中甲苯成分之操作性能研究”,國立中大學環境工程研究所碩士論文.

37.Hartmans, S. and J. Tramper,(1991), “Dichloromethane Removal from
Waste Gases with a Trickle-Bed bioreactor, ”Bioprocess Eng.,Vol.6,
p.83-92.

38.Young S. Oh and Richard Bartha,(1994), “Design and Performance of
a Trickling Air Biofilter for Chlorobenzene and o-Dichlorobenzene
Vapors,”Appl. & Environ. Micorbiology,Vol.60, p.2717-2722.

39.Galaska, E.G. ,G.J. Skladany, and E.N. Nyer,(1990), “Bio-logical
Treatment of Groundwater ,Soils and soil Vapors Contaminated with
Petroleum Hyono-Carbons,”Proc. 44th Ind. Waste Conf., pp.11-21.

40.Togna, A.P.; Skladany, G.J.; Fucich, W.J.; Guarini, W.J.; Singh, M.;
Webster,T.S.,June 18-23,(1995), “Removal of isopentane and
isobutane vapors from an industrial process waste stream using a
field-pilot biotrickling filter,”88th Annual Meeting & Exhibition, Air
& Waste Management Association, San Antonio, Texas.

41.Hekmat, D. and D.Vortmeyer,(1994), “Modeling of Biodegradation
Process in Trickle-Bed Bioreactor,” Chem. Eng. Sci, Vol. 49 ,p.4327-
4345.
42.Kirchner; K.S. Wagner and H.J. rehm,(1992), “Exhaust Gas Purification Using Biocatalysts (Fixed Bacteria Monocultures)-the Influence of Biofilm Disfusion Rate (O2) on the Overall Reaction Rate,”Appl.Microbiol Biotechno., Vol.37,p.277-279.

43.Ottengraf, S.P.P. and A.H.C van den Oever,(1983), “Kinetics of organic compound removal from waste gases with a biological filter,”
Biiotechnol. Bioeng.,Vol.25,p.3089-3102

44.Togna, A.P. and B.R. Folsom,(1992), “Removal of Styrene from Air
Using Bech-Scale Biofilter and Biotrickling Fliter Reactors,” the 85th
Annual Meeting &Exhibition of the AWMA, Kansas city, Missouri.

45.Galaska, E.G., Skladany, G.J,(1990), “Biological Treatment of Groundwater, Soils,and Soil Vapors Contaminated With Petroleum Hyonocarbons,”In Proceedings of 44th Ind. Waste conf.,p.11-21.

46.Van Lith, C.P.M., Ottengraf, S.P.P., Osinga,B,and Diks, R.M.M.,(1993), “The Biological Purification of a MutiComponent Waste Gas Discharged in Artificial Glass Production,” A&WMA, Proc. 86th Annual Meeting & Exhibition,93-WA-52B.07.

47.黃俊傑,1994.6,“以生物滴濾塔處理排氣中丁峒成份之操作性能研究”,國立中山大學環境工程研究所碩士論文,p.57.

48.Todd S.Webster, A. Paul Togna, Yogna, and William J.Cuarini , June14-18, (1998), “From Bench-to Pilot-Scale Experimentation:
Treatment of Volatile Organic Compound Emissions from Spray Paint Booth Appllcations Using a Biological Trickling Filtration Reactor,” Proceedings of the 91st Annual Meeting & Exhibition of Air&Waste Management Association,MP20A.04,San Diego.

49.Diks R.M.M.and S.P.P. Ottengraf,(1991), “verification studies of a
simplified modal for the removal of di chloromethane from waste
gases using a biological trickling fileter,”Bioprocess engineering,
p.31-140.

50.Michaelis,L.; and Menten,H.,(1913), Biochem.Z , 49.333.

51.Monod J.,(1950), Ann. Inst. Pasteur 79,390.

52. Richard W.Ziminski and John Yavorsky, (1994),
“Control of Hazardous Air Pollutants Using a Commercial Biofilter,”
In 87th Annual Meeting & Exhibition of Air & Waste Management
Asso., Cincinnati, Ohio, June 19-24.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code