Responsive image
博碩士論文 etd-0705103-183007 詳細資訊
Title page for etd-0705103-183007
論文名稱
Title
雙鏡式立體環型共振腔單縱模紅外光與藍光雷射之研製
The Study and Implementation of Compact Ring Laser for the Generation of Single Frequency IR and Blue Lasers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-17
繳交日期
Date of Submission
2003-07-05
關鍵字
Keywords
單縱模、環型共振腔、藍光、雙鏡式
single frequency, ring laser, bule laser
統計
Statistics
本論文已被瀏覽 5685 次,被下載 5884
The thesis/dissertation has been browsed 5685 times, has been downloaded 5884 times.
中文摘要
中文摘要

單縱模雷射具有頻率穩定及雜訊小等優點,可用來做精密量測、檢測定位等高附加價值之應用;產生單縱模雷射有許多不同的技術,例如在線型共振腔腔內加入其他光學元件或是以環型共振腔取代線型共振腔;文獻上環型共振腔是目前單縱模技術中最穩定的方法。

本研究目的主要是在設計一套結構簡單、成本低、效率高之單縱模紅外光、綠、藍光雷射。承接我們以往已開發之雙鏡式立體環型共振腔所組成的單縱模紅外光(1064 nm)、綠光(532 nm)雷射系統,我們希望以相同之架構及原理,進而達成更短波長之單縱模946 nm與藍光(473 nm)雷射。

在本論文中,除了介紹如何在我們的雙鏡式結構,藉由單方向之控制,使得雷射光在環型共振腔內得以行進波方式前進,消除空間燒孔效應以及腔內倍頻後所造成的綠(藍)光問題,而達成穩定輸出單縱模雷射之機制,並介紹我們針對多波長光學鍍膜於增益介質晶體、輸入/輸出耦合透鏡等表面,並且搭配模態匹配的數值模擬分析及雷射晶體散熱系統,來克服準三能階的熱效應問題;更進一步地,利用雙鏡式共振腔的另一重要課題:多次再入射的特性及分析,達到立體8字形946 nm雷射,並控制其單方向輸出。

本實驗架構具有體積小、元件少、設計簡單之特性,可以產生穩定之單縱模雷射輸出,非常具有產品開發的價值。
Abstract
Abstract

Single frequency laser has the advantages of high stability in frequency and low noise. Therefore, single frequency laser is now widely used in applications, such as high precision measurement, holography and data storage. Attempts to generate second harmonic radiation using a linear cavity have typically resulted in significant amplitude fluctuations due to longitudinal mode coupling. Various techniques have been proposed for solving the so called “green(blue) problem” to achieve single longitudinal mode operation, such as inserting optical component in the conventional linear cavity or use ring cavity instead of linear cavity. Uni-directional ring cavity has shown to be the most robust method for producing single frequency laser.

The purpose of this study is to develop compact, low-cost and high-efficiency single frequency IR, green and blue lasers. To continue our preview achievement in single frequency IR and green laser systems, shorter wavelength for 946 nm and blue (473 nm) single frequency laser were attempted.

In this thesis, we introduced how could only two spherical mirrors to form the laser cavity for traveling wave oscillation and eliminate “spatial hole burning” caused by the standing wave operation. And we overcome the thermal problem of quasi-three-level laser by multi-wavelength coating on gain medium and input/output couplers, numerical simulation for mode match, and TE-cooling system for laser crystal. Finally, a non-planar figure “8” 946-nm ring laser were developed using the multi-reentrant ring cavity, and controlled beam path at uni-directional operation.

This symmetrical two-mirror figure “8” ring cavity has the merit of compact, few optical elements, and easy design. The stable single frequency laser output of our ring cavity promises to make the design widely applicable to solid-state lasers.
目次 Table of Contents
目 錄
中文摘要………………………………………………………………….i
英文摘要…………………………………………………………………ii
目錄……………………………………………………………………...iv
圖目錄…………………………………………………………………...vi
表目錄…………………………………………………………………....x
第一章 緒論……………………………………………………………..1
第二章 單縱模紅外光與藍光雷射之原理
2.1 Nd:YAG 雷射晶體……………………………………….5
2.2 腔內倍頻之工作原理與倍頻晶體……………………...13
2.3 空間燒孔效應與藍光問題……………………………...26
2.4 綠/藍光環型共振腔之文獻回顧……………………….31
第三章 線型共振腔946 nm雷射
3.1 準三能階雷射工作機制與重複吸收損耗討論………...38
3.2 Ti:sapphire tunable laser特性量測………………………44
3.3 模態匹配數值模擬分析………………………………...50
3.4 雷射晶體金相製備與光學鍍膜設計…………………...55
3.5 雷射共振腔之光學鍍膜設計…………………………...59
3.6 雷射晶體散熱系統……………………………….……..66
3.7 946 nm 雷射特性量測…………………………………..70
第四章 雙鏡式環型共振腔之特性
4.1 雙鏡式立體環型共振腔單縱模紅外光
與藍光雷射之架構…………………………………......74
4.2 光束行進之單方向控制………………………….…..…77
4.3 多次再入射之雙鏡式共振腔特性及分析…………...…81
4.4雙鏡式立體環型共振腔946 nm雷射…………..…....…89
第五章 結論………………………….…..…………………………….98
參考文獻………………………….…..……………………………….100
中英對照表……………………….…..……………………………….104
參考文獻 References
[1] R. L. Byer, “Diode laser-pumped solid-state lasers,” Science, vol. 239, No. 4841, pp. 742-747, 1988.
[2] D. W. Anthon, D. L. Sipes, T. J. Pier, and M. R. Ressel, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quant. Electron., vol. 28, No. 4, pp. 1148-1157, 1992.
[3] G. E. James and E. M. Harrell, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett., vol. 15, pp. 1141-1143, 1990.
[4] Volker Gaebler, Baining Liu, and Hans Joachim Eichler, “Stabilization of a diode-pumped intracavity frequency doubled microlaser at 473nm,” OSA Advanced Solid-State Laser Meeting, Feb. 3, 1999.
[5] J. L. Nightingale, “Poynting vector walk-off compensation in type II phasematching,” U. S. Patent 5,136, 597(1992).
[6] M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, “> 8.5 watts of single frequency 532 nm light from a diode pumped intra-cavity doubled ring laser,” Conf. on Lasers and Electro-Optics (CLEO), paper CPD-21, CA, U.S.A., 1996.
[7] K. I. Martin, W. A. Clarkson, and D. C Hanna, “3W of single-frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett., vol. 21, No. 12, pp. 875-877, 1996.
[8] 翁義龍,“腔內倍頻之被動式Q開關藍光雷射”,國立中山大學光電工程研究所碩士論文,2000.
[9] Walter Koechner, “Solid-State Laser Engineering,” 4th ed. Springer, ch.7, 1996.
[10] S. Z. Kurtev, O. E. Denchev, and S. D. Savov, “Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation,” Appl. Opt., vol. 32, pp. 278-285, 1993.
[11] H. Kiriyama, T. Yoshida, N. Srinivasan, H. Matsui, K. Nishida, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Thermal birefringence effect on the performance of a laser-diode pumped solid-state laser,” Jpn. J. Appl. Phys., vol. 36, pp. 7197-7201, 1997.
[12] R. Lavi, S. Jackel, A. Tal, E. Lebiush, Y. Tzuk, S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Comm., vol. 195, pp. 427-430, 2001.
[13] Masaki Tsunekane, Noboru Taguchi, and Humio Inaba, “Efficient 946-nm laser operation of a composite Nd:YAG rod with undoped ends,” Appl. Opt., vol. 37, No. 24, pp. 5713-5719, 1998.
[14] P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., vol. 7, pp. 118, 1961.
[15] J. Knittel, and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity,” IEEE J. Quant. Electron., vol. 33, No. 11, pp. 2021-2028, 1997.
[16] A. Miklos, Chin-How Lim, W. W. Hsiang, Geng-Chiau Liang, A. H. Kung, A. Schmohl, and P. Hess, “Photoacoustic measurment of methane concentration using a compact pulsed optical parametric oscillator,” Appl. Opt., vol. 41, pp. 2985-2993, 2002.
[17] Ulrich Strobner, Jan-Peter Meyn, and Richard Wallenstein, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B, vol. 19, No. 6, p. 1419, 2002.
[18] A. Yariv, “Optical Electronics in Modern Communications,” New York Oxford, ch. 8, 1997.
[19] Sungkyu Yu and A. M. Weiner, “Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO3,” J. Opt. Soc. Am. B, vol. 16, No. 8, pp. 1300-1304, 1999.
[20] R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, Ba2O4, LiIo3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quant. Electron., vol. JQE-26, pp. 922-933, 1990.
[21] http://www.cristal-laser.fr/PAGES/lbo.htm
[22] http://www.photox.oxfordpages.co.uk/knbo3.html
[23] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals,” 3rd. ed., 1999.
[24] http://www.inphasecrystal.com/products.html
[25] C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG–BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett., vol. 28, No. 6, pp. 432-434, 2003.
[26] Ichiro Shoji, Yoichi Sato, Sunao Kurimura, Voicu Lupei, and Takunori Taira, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett., vol. 27, No. 4, pp. 234-236, 2002.
[27] T. Baer, “Large-ampltitude fluctuations due to longitudinal mode coupling in diode-pumped intracaity-doubled Nd:YAG,” J. Opt. Soc. Am. B, vol. 3, No. 9, pp. 1175-1180, 1986.
[28] V. Magni, G. Cerullo, S. D Silvestri, O. Svelto, L. J. Qian, and M. Danailov, “Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,” Opt. Lett., vol. 18, No. 24, pp. 2111-2113, 1993.
[29] M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarizaed modes in diode-pumped Nd:YAG lasers,” Opt. Lett., vol. 13, No. 10, pp. 805-807, 1988.
[30] D. A. Draegert, “Efficient single-longitudinal-mode Nd:YAG laser,” IEEE J. Quant. Electron., vol. QE-8, No. 2, pp. 235, 1972.
[31] W. Culshaw, J. Kannelaud, and J. E. Peterson, “Efficient frequency-doubled single-frequency Nd:YAG laser,” IEEE J. Quant. Electron., vol. QE-10, pp. 253-263, 1974.
[32] H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazumura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quant. Electron., vol. 28, pp. 1165-1167, 1992.
[33] V. Evtuhov and A. E. Siegman, “A 'twisted-mode' technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt., vol. 4, pp. 142-143, 1965.
[34] T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode pumped Nd:YVO4 microchip lasers,” Opt. Lett., vol. 16, pp. 1955-1957, 1991.
[35] Zayhowski and Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett., vol. 14, pp. 24-26, 1989.
[36] T. J. Kane and R. L. Byer, “Monolithic unidirectional single-mode Nd:YAG ring laser,” Opt. Lett., vol. 10, pp. 65-67, 1985.
[37] Jong Rak Park, Tai Hyun Yoon, Myung Sai Chung, and Hai-Woong Lee, “Unidirectional single-mode Nd:YAG laser with a planar semimonolithic ring cavity,” Appl. Opt., vol. 38, No. 21, pp. 4566-4569, 1999.
[38] H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Novel reentrant 2-mirror ring resonator for generation of single frequency green laser,” Opt. Lett., vol. 25, pp. 542-544, 2000.
[39] I. Freitag, R. Henking, A. Tunnermann, and H. Welling, “Quasi-three-level room-temperature Nd:YAG ring laser with high single-frequency output power at 946 nm,” Opt. Lett., vol. 20, No. 24, pp. 2499-2501, 1995.
[40] M. Bode, I. Freitag, A. Tunnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett., vol. 22, No. 16, pp. 1220-1222, 1997.
[41] Robert S. Afzal, Anthony W. Yu, John J. Zayhowski, T. Y. Fan, “Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser,” Opt. Lett., vol. 22, No. 17, pp. 1314-1316, 1997.
[42] I. Freitag, A. Tunnermann, and H. Welling, “Passive Q-switched Nd:YAG ring lasers with high average output power in single-frequency operation,” Opt. Lett., vol. 22, No. 10, pp. 706-708, 1997.
[43] G. T. Maker and G. P. A. Malcolm, “Single-frequency diode-pumped Nd:YAG ring laser with no intracavity elements,” Opt. Lett., vol. 18, No. 21, pp. 1813-1815, 1993.
[44] D. Chen, C. L. Fincher, D. A. Hinkley, R. A. Chodzko, T. S. Rose, and R. A. Fields, “Semimonolithic Nd:YAG ring resonator for generating CW single-frequency output at 1.06
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code