Responsive image
博碩士論文 etd-0705103-183204 詳細資訊
Title page for etd-0705103-183204
論文名稱
Title
高功率微晶片型藍光固態雷射之研製
High-power Solid-state Blue Microchip Laser by Intracavity Frequency Doubling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-26
繳交日期
Date of Submission
2003-07-05
關鍵字
Keywords
固態雷射、藍光雷射
microchip, blue laser
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
中文摘要
藍/綠光雷射短波長輸出特性,使其可廣泛應用於微機械加工、雷射顯示器、資料儲存、水下通信…等方面。近年來人們一直致力於簡化高功率藍/綠光雷射架構並降低其成本,因此各種藍/綠光雷射技術皆被深入探討研究,其中又以半導體雷射激發之固態藍/綠光雷射,配合腔內( intracavity )倍頻( second harmonic generation;SHG )技術,是目前最有效產生高功率輸出與長生命期之藍/綠光雷射製作方式,在共振腔設計上,又以直接鍍膜於黏合式晶體前後端面作為共振腔其體積最為小巧。由於Nd:YAG之倍頻藍光雷射在物理機制上屬於準三能階( quasi three level )雷射系統,使得藍光雷射在技術開發上除了激發功率強度的考量外,更有別於四能階雷射系統,散熱問題將扮演著更重要的角色。

在高功率固態雷射研製過程中,若能配合光學模擬軟體在雷射系統上進行適當地評估分析,如:聚焦系統效能分析、鍍膜參數選擇、雷射輸出模態…等,對於整個雷射系統開發過程,無論在效率上或是成本上皆能產生很大助益。因此實驗前除了使用光學軟體ZEMAX來選擇所需聚焦元件,及估量架設時所需的相對位置;並嘗試以雷射系統分析設計軟體GLAD ( general laser analysis and design ),來模擬分析實驗室所開發的腔內倍頻準三能階CW( continue wave )藍光雷射。

實驗中我們利用適當的透鏡聚焦、熱導管散熱、晶體座角度旋轉之以及對幫浦波長穩定控制,在共振腔長約4 mm條件下,藍光輸出功率可達到192 mW,就文獻所知,在此小體積架構下,此結果是目前最高的功率輸出,若能藉由lens duct 此光學元件進行聚焦,將使整體架構更為簡單。
Abstract
Abstract

As blue/green laser has a short wavelength radiation, it can be applied to micro-machining, laser display, high-density optical data storage, underwater communications, and so on. Large efforts have been devoted to simplify the laser system and reduce the cost. Therefore, various types of blue/green lasers have been studied, especially intracavity frequency doubling of the diode-pumped solid-state laser, which can effectively generate high blue/green laser powers with long lifetime. Among all cavity designs, direct-coated composite crystal is the most compact structure. Compare with the green laser, which is a four-level laser, blue laser belongs to a quasi-three-level system. Thus, it is more important to control the temperature of gain medium.

Before the experiment, making an estimation will greatly benefit the progress and efficiency. ZEMAX was utilized to simulate the focus system and GLAD was used to model our intracavity frequency-doubled blue laser.

In the experiment, we used a LD array as a pumping source and arranged suitable lens to reduce the array’s spot size. The laser crystal was mounted onto a copper mount which was cooled by the Vapochill cooling system. In addition, we also tried to rotate the crystal and obtained a peak power of 192 mW with only 4 mm cavity length. The result is the highest output power of microchip blue laser to our knowledge. Using lens duct as the pump transport optics can further miniaturize this composite-chip blue laser.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
表目錄 vii
第一章 緒論 1
第二章 固態藍光雷射之基本原理
2-1準三能階與四能階雷射系統 5
2-2 Nd:YAG與Nd:YVO4增益介質之比較 8
2-3倍頻理論 14
2-4藍光非線性晶體之比較 26
第三章 聚焦系統與共振腔之模擬分析
3-1半導體雷射陣列之聚焦設計與分析 28
3-2 GLAD原理 43
3-3 Nd:YAG準三能階雷射之數值分析 52
第四章 高功率Nd:YAG藍光雷射
4-1藍光雷射系統架構 57
4-2熱導管溫控系統之工作原理 66
4-3實驗結果與分析 71
第五章 結論 83
參考文獻 84
中英對照表 87
附錄1 .準三能階半對稱式共振腔模擬程式(未修正下能階電子數) 91
附錄2 .準三能階半對稱式共振腔模擬程式(修正下能階電子數) 95
參考文獻 References
參考文獻

[1] D. Hargis and A. Earman, “Diode-pumped microlasers promise portable projectors,” Laser Focus World, May, 1998.
[2] D. Hargis and A. Earman, “Lasers replace conventional technology in display designs,” Laser Focus World, July, 1998.
[3] H. Jones-Bey, “Expiring license opens field for solid-state blue lasers,” Laser Focus World, pp. 133-137, Jan., 2000.
[4] T. Honda and F. Koyama, “Design and fabrication of ZnSe-based blue/green surface emitting lasers,” Journal of Crystal Growth, Vol. 159, pp. 595-599, 1996.
[5] S. Nakamura, “InGaN-based blue light-emitting diodes and laser diodes,” Journal of Crystal Growth, Vol. 201, pp. 290-295, 1999.
[6] D. Fluck and P. Gunter, “Efficient generation of CW blue light by sum-frequency mixing of laser diodes in KNbO3,” Optics Communication, Vol. 136, pp. 605-612, 1997.
[7] Y. Zhao, S. Fleming and S. Poole, “22 mW blue output power from a Pr3+ fluoride fibre upconversion laser,” Optics Communication, Vol. 114, pp. 285-288, 1995.
[8] C. Q. Wang, L. Reekie, Y. T. Chow, and W. A. Gambling,“Efficient blue light generation from a diode laser pumped Nd:YAG laser,” Optics Communication, Vol. 167, pp. 155-158,1999.
[9] D. G. Matthews, R. S. Conroy, and B. D. Sinclair, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Optics Letters, Vol. 21, No. 3, pp. 198-200, 1996.
[10] T. Kellner, F. Heine, and G. Huber,“Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, b-BaB2O4, and LiB3O5,” Applied Physics B, Vol. 65, pp. 789-792, 1997.
[11] M. Pierrou, and F. Laurell,“Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal, Optics Letters, Vol. 24, No. 4, pp. 205-207, 1999.
[12] V. Gaebler, B. Liu, and H. J. Eichler,“Efficient blue cw Nd:YAG microchip laser with two intracavity frequency doublers,” Optics Letters, Vol. 25, No. 18, pp. 1343-1345, 2000.
[13] P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the F3/2-I9/2 transitions of Nd:YVO4 and Nd:YAG, ” Optics Letters, Vol. 25, No. 01, pp. 34-36, 2000.
[14] G. Feugnet, C. Bussac, C. Larat, M. Schwarz, and J. P. Pocholle, “High-efficiency TEM00 Nd:YVO4 laser longitudinally pumped by a high-power array,” Optics Letters, Vol. 20, No. 2, pp. 157-159, 1995.
[15] W. A. Clarkson and D. C. Hanna, “Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar,” Optics Letters, Vol. 21, No. 12, pp. 869-871, 1996.
[16] W. A. Clarkson and D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Optics Letters, Vol. 21, No. 6, pp. 375-377, 1996.
[17] CASIX, “Crystal Guide,” 中國晶體, 1999.
[18] A. Kaminskii, “Crystalline Lasers: Physical Processes and Operating Schemes,” CRC Press, Inc., 1996.
[19] F. Hanson, “Improved laser performance at 946 and 473 nm from a composite Nd:Y3Al5O12,” Applied Physics Letters., Vol. 66, pp. 3549-3551, 1995.
[20] P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Physical Review Letters, Vol. 7, pp. 118-119, 1961.
[21] J. Knittel and A. H. Kung, “Fourth harmonic generation in a resonant ring cavity,” IEEE Journal of Quantum Electronics, Vol. 33, No. 11, pp. 2021-2028, 1997.
[22] C. G. B. Garret and F. H. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities” IEEE Journal of Quantum Electronics, Vol. 2, pp. 328 -329, 1966.
[23] G. D. Boyd and D. A. H. Kleinman, “Parametric interaction of focused Gaussian light beams” Journal of Applied Physics, Vol. 39, pp. 3597, 1968.
[24] http://www.photox.oxfordpages.co.uk/knbo3.htm
[25] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals” 3rd. ed., 1999.
[26] http://www.cristal-laser.fr/PAGES/lbo.htm

[27] B. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient frequency-stable laser-diode-pumped Nd:YAG laser,” Optics Letters, Vol. 10, No. 2, pp. 62-64, 1985.
[28] Th. Graf, and J. E. Balmer, “High-power Nd:YLF laser end pumped by a diode-laser bar,” Optics Letters, Vol. 18, No. 16, pp. 1317-1319, 1993.
[29] L. Turi and T. Juhasz, “High-power longitudinally end-diode-pumped Nd:YLF regenerative amplifier,” Optics Letters, Vol. 20, No. 2, pp. 154-156, 1995.
[30] T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q-switching in diode-laser-pumped Nd:YVO4 lasers,” Applied Optics, Vol. 34, No. 21, pp. 4298-4301, 1995.
[31] R. Beach, P. Reichert, W. Benett, S. Mitchell, and R. Solarz, “Scalable diode-end-pumping technology applied to a 100-mJ Q-switched Nd3+:YLF laser oscillator,” Optics Letters, Vol. 18, No. 16, pp. 1326-1328, 1993.
[32] http://www.vloc.com
[33] R. J. Beach, “Theory and optimization of lens ducts,” Applied Optics, Vol. 35, No. 12, pp. 2005-2015, 1995.
[34] N. Bloembergen,“Nonlinear Optics,”W. A. Benjamin, Inc., Reading, MA, 1965.
[35] R. H. Hardin and F. D. Tappert,“Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations,” SIAM Review, Vol. 15, p. 423, 1973.
[36] R. L. Byer,“Diode laser-pumped solid-state lasers,” Science, Vol. 239, No. 4841, pp. 742-747, 1988.
[37] A. Faghri, “Heat Pipe Science and Technology,” Washington, D.C. : Taylor & Francis , 1995.
[38] 重慶大學熱管科研組、中國科學院技術情報研究所重慶分所合編, “熱管基礎及其應用”﹐科學技術文獻出版社重慶分社﹐重慶﹐1977。
[39] 孫國華, “熱管(Heat Pipe)”, 科學月刊, 18期, 1971年6月
[40] http://www.vapochill.com
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.97.157
論文開放下載的時間是 校外不公開

Your IP address is 3.139.97.157
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code