Responsive image
博碩士論文 etd-0705104-165917 詳細資訊
Title page for etd-0705104-165917
論文名稱
Title
熱退火及氧電漿製程對高介電係數鈦酸鍶鋇鋯薄膜特性之影響
The Influences of Thermal Annealing and Oxygen Plasma Treatment on the Characteristics of High Dielectric Coefficient (Ba, Sr)(Ti, Zr)O3 Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-25
繳交日期
Date of Submission
2004-07-05
關鍵字
Keywords
濺鍍、電漿、退火
DRAM, BSTZ
統計
Statistics
本論文已被瀏覽 5691 次,被下載 23
The thesis/dissertation has been browsed 5691 times, has been downloaded 23 times.
中文摘要
本論文利用反應性射頻磁控濺鍍法,以最佳的濺鍍條件,在Pt/Ti/SiO2/Si基板上製備(Ba,Sr)(Ti,Zr)O3 (BSTZ)薄膜,並將製備好的薄膜分別以快速熱退火、傳統爐退火、氧電漿、氮電漿和氧化亞氮電漿進行後處理,以提升BSTZ薄膜之介電特性。
在物性研究方面,藉由XRD、SEM與AFM分析,探討不同後處理對於BSTZ薄膜的影響。在電性方面,亦藉由HP4194A以及HP4156C半導體參數分析儀,分析在不同後處理下的薄膜,其MIM (metal-insulator-metal)結構之漏電流大小,並探討薄膜本身在不同電壓下其介電常數的變化。
由實驗結果得知,BSTZ薄膜經過退火處理後,可以提升其介電常數及降低漏電流,但是過高的傳統爐退火溫度將使其漏電流過大;而在不同氣氛的電漿處理下,漏電流特性均有明顯的降低,在氧電漿處理6分鐘後再使用快速熱退火600℃持溫2分鐘,介電常數可達295,在電場0.1MV/cm下,漏電流密度為1.38×10-9A/cm2,可知適度地結合退火與電漿處理製程,將可有效地提升薄膜之介電特性。
Abstract
In this thesis, the reactive rf magnetron sputtering was used to deposit (Ba,Sr)(Ti,Zr)O3 (BSTZ) thin films on Pt/Ti/SiO2/Si substrate with the optimal parameters. The post-treatments of rapid thermal annealing (RTA), conventional thermal annealing (CTA), O2 plasma, N2 plasma, and N2O plasma respectively were used to promote the dielectric characteristics.
The physical characteristics of BSTZ thin films were obtained by the analyses of XRD, SEM, and AFM. The influences of post-treatments on thin films were discussed. The electrical properties of BSTZ thin films were estimated through the measurement of leakage current on MIM structure with HP4194A and HP4156C semiconductor parameters analyzer. Also, the dependences of dielectric constants on applied voltage were discussed.
After annealing treatments, the dielectric constants were increased and the leakage currents were decreased respectively. But with the higher annealing temperature of CTA, the larger leakage currents were obtained. In the different atmosphere of plasma treatments, the leakage currents were decreased obviously. The dielectric constant was about 295 after O2 plasma treatment of 6 minutes succeeded with RTA at 600℃ for 2 minutes; it reveals that the leakage current was about 1.38x10-9 A/cm2 under the applied electrical field of 0.1 MV/cm. Therefore, to combine the annealing and plasma treatments properly could increase the dielectric characteristics effectively.
目次 Table of Contents
摘要 I
目錄 III
圖表目錄 VI
第一章 前言 1
第二章 理論 6
2.1 鈦酸鋇系(BaTiO3)陶瓷材料 6
2.1.1 鈦酸鋇(BaTiO3)之結構與特性 6
2.1.2 雜質的摻雜對鈦酸鋇(BaTiO3)特性的變化 7
2.2 介電理論 8
2.2.1 介電極化和極化機構 8
2.2.2 介電損失 10
2.3.3 漏電流 11
2.3 薄膜沉積原理 12
2.3.1 沉積現象 12
2.3.2 薄膜表面及截面結構 13
2.4 反應性射頻磁控濺鍍原理 14
2.4.1 直流輝光放電 14
2.4.2 磁控濺射 15
2.4.3 射頻濺射 15
2.4.4 反應性濺射 16
第三章 實驗 17
3.1 矽基板的清洗步驟 17
3.2 濺鍍靶材的製作 18
3.3 濺鍍系統與薄膜沉積 18
3.4 熱退火(Annealing)處理 20
3.5 電漿製程(Plasma Treatment)處理 20
3.6 X光繞射 (X-Ray Diffraction, XRD) 分析 21
3.7 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)
分析 22
3.8 膜厚量測 22
3.9 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 23
3.10 二次離子質譜儀(Secondary Ion Mass Spectroscopy, SIMS)
分析 23
3.11 高介電薄膜的製作 23
3.12 薄膜電性測量 25
第四章 結果與討論 26
4.1 快速熱退火之影響 26
4.1.1 SEM分析 27
4.1.2 XRD分析 27
4.1.3原子力顯微鏡(AFM)分析 28
4.1.4電壓-介電常數特性分析 29
4.1.5漏電流特性分析 30
4.2 傳統爐管退火之影響 31
4.2.1 SEM分析 31
4.2.2 XRD分析 31
4.2.3電壓-介電常數特性分析 32
4.2.4漏電流特性分析 33
4.3 氧電漿表面處理之影響 33
4.3.1 SEM分析 34
4.3.2 XRD分析 34
4.3.3電壓-介電常數特性分析 35
4.3.4漏電流特性分析 35
4.4 氮電漿表面處理之影響 36
4.4.1 SEM分析 36
4.4.2 XRD分析 37
4.4.3電壓-介電常數特性分析 37
4.4.4漏電流特性分析 38
4.5 N2O電漿表面處理之影響 38
4.5.1 SEM分析 38
4.5.2 XRD分析 39
4.5.3電壓-介電常數特性分析 39
4.5.4漏電流特性分析 39
第五章 結論 41
參考文獻 43
參考文獻 References
[1]Y. Ohji, Y. Matsui, T. Itoga, M. Hirayama, Y. Sugawara, K. Torii, H. Mik, , M. Nakata , I. Asano, S. Iijima and Kawamoto, Y, IEEE, IEDM, 111 (1995).
[2]林明田和葉清發,“DRAM記憶元之沿革與高介電薄膜之應用”,電子月刊第一卷第四期,頁122-127。
[3]項嵩仁,”高電容密度之MIM(Al/TiN/Ta2O5/TiN/Al)褶層型晶片電容製作”,成功大學電機工程學系碩士論文,(2000)。
[4]T. Kaga, M Ohkura, F Murai, N Yokoyama and E Takeda, Journal of Vacuum Science & Technology B, 13, 2329 (1995).
[5]L. H. Parker and A. F. Tasch, IEEE Circuits and Device Magazine, 17 (1990).
[6]C. S. Hwang, S. O. Park, H. J. Cho, C. S. Kang, H. K. Kang, S. I. Lee and M. Y. Lee Appl. Phys. Lett., 67, 2819 (1995).
[7]S. Ezhilvalavan and T. Y. Tseng, Thin Solid Films, 360, 268 (2000).
[8]H. F. Cheng, J. Appl. Phys., 79, 7965 (1996).
[9]Y. L. Qin, C. L. Jia and K. Urban, Appl. Phys. Lett., 80, 2728 (2002).
[10]T. S. Kim, M. H. Oh and C. H. Kim, Thin Solid Films, 254, 273 (1995).
[11]S. G. Lee and Y. H. Lee, Thin Solid Films, 353, 244 (1999).
[12]王宏文,”添加物對鈦酸鍶鋇薄膜特性之影響”,中原大學化學系碩士論文,(2001)。
[13]C. H. In and L. F. Shen, J. Mater. Scie., 25, 4699 (1990).
[14]L. Goux, M. Gervais, A. Catherinot, C. Champeaux and F. Sabary, Journal of Non-Crystalline Solids, 303, 194 (2002).
[15]S. P. Sang and G. Y. Soon, Jpn. J. Appl. Phys., 39, 1177 (2000).
[16]I. C. Ho and S. L. Fu, J. Mater. Sci., 25, 4699 (1990).
[17]P. C. Joshi and S. B. Krupanidhi, J. Appl. Phys., 73, 7627 (1993).
[18]M. Hu and S. Krupnidhi, Appl. Phys. Lett., 61, 1246 (1992).
[19]C. B. Samantaray, A. Roy, M. Roy and M. Mukherjee, J. Phys. Chem. Solids, 63, 65 (2002).
[20]S. Halder and S. B. Krupanidhi, Solid state communications, 122, 429 (2002).
[21]Y. FuKuda, K. Aoki, K. Numata and A. Nishimura, Jpn. J. Appl. Phys., 33, 5255 (1994).
[22]C. J. Peng, H. Hu and S. B. Krupanidhi, Appl. Phys. Lett., 63, 734 (1993).
[23]J. G. Cheng, X. J. Meng, B. Li, J. Tang, S. L. Guo and J. H. Chu, Appl. Phys. Lett., 75, 2132 (1999).
[24]李雅明,”固態電子學”,全華科技圖書股份有限公司,(1997)頁168-172。
[25]K. Igrashi, K. Koumoto and H. Yanagida, J. Mater. Sci., 22, 2828 (1987).
[26]汪建民,“陶瓷技術手冊”,中華民國產業科技發展協進會,中華民國冶金學會,(1999)頁45-46。
[27]K. Sakamoto, K. Usami, M. Watanabe, R. Arafune and S. Ushioda, Appl. Phys. Lett., 73, 1832 (1998).
[28]T. G. In, S. Baik and S. Kim, J. Mater. Res., 13, 990 (1998).
[29]A. J. Moulson and J. M. Herbert, “Electroceramics materials, properties, applications”, (1990).
[30]W. Bolton, Engineering Materials Technology, 3rd Edition, (1998).
[31]蔡承祺,”以射頻磁控濺鍍法製備(Ba,Sr)(Ti,Sn)O3晶片電容薄膜及其特性之探討”,成功大學材料科學及工程學系碩士論文,(1999)。
[32]莊達人,”VLSI製造技術”,高立圖書股份有限公司,(1995)頁146-160。
[33]J. A. Thornton, J. Vac. Sci. Technol., 11, 666 (1974).
[34]施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,(1990) 頁425。
[35] R. W. Berry, P. M. Hall and M. T. Harris, ” Thin Film Technology”, 201 (1980).
[36]J. L. Vossen and W. Kern,” Thin Film Process, Academic Press”, 134 (1991).
[37]F. Shinoki and A. Itoh, J. Appl. Phys., 46, 3381 (1975).
[38]E. J. Bienk, H. Jensen and G. Sorensen, Mater. Sci. and Eng. A, 140, 696 (1991).
[39]B. Panda, A. Dhar, G. D. Nigam, D. Bhattacharya and S. K. Ray, J. Appl. Phys., 83, 1114 (1998).
[40]H. Jung, H. Sim, K. Im, D. Yang and H. Hwang, Jpn. J. Appl. Phys., 40,2221 (2001).
[41]D. C. Shye, C. C. Hwang, M.J. Lai, C. C. Jaing, J. S. Chen, S. Huang, M. H. Juang, B. S. Chiou and H. C. Cheng, Jpn. J. Appl. Phys., 42, 549 (2003).
[42]W. S. Choi, B. S. Jang, Y. Roh, J. Yi and B. Hong, J. Noncrystalline Solids, 303, 190 (2002).
[43]S. K. Ghandhi, VLSI Fabrication Principles ,John Wiley & Sons, INC. 522 (1994).
[44]S. Saha and S. B. Krupanidhi, Mater. Sci. Engineering B, 57, 135 (1999).
[45]L. A. Knauss, J. M. Pond, J. S. Horwitz and D. B. Chrisey, Appl. Phys. Lett., 69, 25 (1996).
[46]C. S. Hwang and S. H. Joo, J. Appl. Phys., 85, 2431 (1999).
[47]J. H. Joo, J. M. Seon, Y. C. Jeon, K. Y. Oh, J. S. Roh and J. J. Kim, Appl. Phys. Lett., 70, 3053 (1997).
[48]B. H. Lee, L. Kang, R. Nieh, W. J. Qi and J. C. Lee, Appl. Phys. Lett., 76, 1926 (2000).
[49]C. C. Hwang, M. J. Lai, C. C. Jaing, J. S. Chen, S. Huang, M. H. Juang and H. C. Cheng, Jpn. J. Appl. Phys., 39, 1314 (2000).
[50]F. C. Chiu, J. J. Wang, Y. M. Lee and S. C. Wu, J. Appl. Phys., 81, 6911 (1997).
[51]王嘉榮,”高介電係數薄膜(Ba, Sr)(Ti, Zr)O3之製備及其特性之研究”,國立中山大學電機工程學系碩士論文,(2002)。
[52]蔡均達,”以氧電漿處理於濺鍍成長鈦酸鍶鋇薄膜之研究”,雲林科技大學電子工程學系碩士論文,(2002)。
[53]C. C. Leu, S. H. Chan, H. Y. Chen, R. H. Horng, D. S. Wuu, L. H. Wu, T. Y. Huang, C. Y. Chang and S. M. Sze, Microelectronics Reliability, 40, 679 (2000).
[54]G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis and A. Pinczuk, Appl. Phys. Lett., 72, 1308 (1998).
[55]H. J. Cho, S. Oh, C. S. Kang, C. S. Hwang, B. T. Lee, K. H. Lee, H. Horii, S. I. Lee and M. Y. Lee, Appl. Phys. Lett.,71, 3221 (1997).
[56]C. S. Chang, T. P. Liu and T. B. Wu, J. Appl. Phys., 88, 7242 (2000)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.81.58
論文開放下載的時間是 校外不公開

Your IP address is 3.139.81.58
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code