Responsive image
博碩士論文 etd-0705105-225951 詳細資訊
Title page for etd-0705105-225951
論文名稱
Title
聚醯亞胺/黏土奈米複合材料之合成、性質、與微結構研究
Synthesis, Properties, and Mcrostructure of Polyimide/Clay Nanocomposites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-16
繳交日期
Date of Submission
2005-07-05
關鍵字
Keywords
奈米複合材料、黏土、聚醯亞胺
Nanocomposites, Clay, Polyimide
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
本研究以二種方式合成聚醯亞胺奈米複合材料。其中一段式製程係以高分子擴散方式將黏土分散於高分子基質中,而二段式製程則以單體擴散進入黏土層間,再聚合成高分子,將黏土層剝離。使用X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)、傅氏紅外光譜儀(FTIR)、動態光散射儀(DLS)、熱重分析儀(TGA)、熱機械分析儀(TMA)、動態機械分析儀(DMA)、及氣體滲透率分析儀(GPA) ,將黏土添加量、界面活性劑、溶劑移除、及不同種類黏土等四個效應對此複合材料之影響做鑑定與分析。
就黏土添加量效應而言,以傳統拒外體積理論分析長厚比(Aspect ratio) 50 ~ 200的黏土,能有效改善聚醯亞胺性質之最少黏土添加量為0.31 ~ 0.08 wt%。就界面活性劑效應而言,以界面活性劑1甲基-3辛基-氯化咪唑銨(1-methyl-3-octyl-imidazolium chloride)改質蒙脫土而成之有機黏土(8M)較十二烷基銨鹽(Dodecylammonium ion)改質之有機黏土(12M)的裂解溫度提高91 0C。但受限於此有機黏土與聚醯胺酸系統之親和力,添加5 wt%有機黏土(8M)於聚醯亞胺中,聚醯亞胺之10 wt% 重量損失溫度(T10% Loss)及最大裂解速率溫度(Td.max)分別增加4及15 0C。另外,18M {octadecylmethyl-bispolyoxylene [15] ammonium chloride改質蒙脫土}與30B (Methyl-tallow bis-2-hydroxyethyl ammonium ion改質蒙脫土)兩種與溶劑(NMP)有良好親和力的有機黏土合成聚醯亞胺奈米複合材料,添加1 wt%的有機黏土,對聚醯亞胺阻氣性質的改善甚大,其相對氧氣滲透速率降為0.5。就溶劑移除效應而言,我們探討了插層過程中聚醯亞胺奈米複合材料結構的形成機制。以XRD及TEM分析,即使在有機黏土添加量為1 wt%時,也可觀察到基面間距(d-spacing)減少至~ 1.30 nm之情況。對於聚醯亞胺/黏土奈米複合材料之XRD圖譜中出現基面間距約1.30 nm之現象,我們分別以XRD分析聚醯胺酸/黏土、有機黏土/溶劑、有機黏土、及原黏土受熱時之基面間距之變化,而提出與其它文獻不同的論點。我們認為此現象並非單層的聚醯胺酸分子以平面組態插層於黏土層間,並觀察到此現象與聚醯胺酸或聚醯亞胺之插層無關。而主要是由於加熱過程中,溶劑移除時帶出黏土層間的插層劑及聚醯胺酸分子、部份插層劑裂解、及因總體積減小,黏土層再聚集之效應所致。就不同製備方式而言,以單體擴散至蒙脫土之方式合成聚醯亞胺奈米複合材料,其相對氧氣滲透速率較高分子擴散製程者至多高0.1,T10% Loss至多高11 0C。就不同種類黏土效應而言,以具活性之有機黏土(magadiite)與不具活性之蒙脫土分別製備聚醯亞胺奈米複合材料,後者T10% Loss較前者至多高7 0C,相對氧氣滲透速率至多低0.07,顯示以蒙脫土改質聚醯亞胺其熱及阻氣性質的提昇較佳。
Abstract
Polyimide/clay nanocomposites were synthesized via two processes. The one-step process is a polymer-diffusion process, and the two-step process is a monomer-diffusion/in-situ polymerization process. Effect of clay loading, surfactant, solvent-release, and clays on the structural formation and properties of the hybrids were studied. XRD (X-ray-diffractometer), TEM (transmission electron microscopy), FTIR (Fourier-transform infrared spectroscopy), DLS (dynamic light scattering), TGA (thermo-gravimetric analyzer), TMA (thermo-mechanical analyzer), DMA (dynamic mechanical analyzer), and GPA (gas permeability analyzer) were used for the characterization of the clays and composites.
For the effect of clay-loading, it is found that the threshold of clay loading capable of efficiently improving the properties of polyimide (PI) matrix, should be larger than 0.08 ~ 0.31 wt% for the clay with aspect ratio of 200 ~ 50, as judged by the calculation of classical excluded volume argument. For the effect of surfactant, a thermally stable organoclay of 1-methyl-3-octyl-imidazolium chloride modified montmorillonite (8M) displayed the degradation temperature at maximum rate (Td.max) 91 0C higher than that of dodecyl-amine hydrochloride modified montmorillonite (12M). For PI8M hybrid with 5 wt% clay loading, the T10% Loss and Td.max increased 4 0C and 15 0C respectively as compared to that of the neat PI. Besides, two organoclays with improved affinity to solvent NMP (N-methyl-2-pyrrolidone) 18M {octadecylmethyl-bispolyoxylene [15] ammonium chloride modified montmorillonite} and 30B (Methyltallow-bis-2-hydroxyethyl ammonium ion modified montmorillonite) were used to prepare PI/clay nanocomposites. The relative oxygen permeation rate decreased to 0.5 upon the incorporation of these organoclays of 1 wt%, displaying superior improvement on the gas barrier property of polyimide. For the solvent-release effect, the intercalation behavior of the structural formation of PI/clay nanocomposites was studied. The reduction of d-spacing (~1.30 nm) of clay exists in PI/clay nanocomposites even with the case of 1 wt% clay-loading as characterized by XRD and TEM observation. An opposite argument was presented about the explanation to the contraction in galleries of clay with d001~1.30 nm for PI/clay nanocomposites, after the examination of PAA/clay, organoclay/NMP, organoclay, and pristine clay subjected to a specific heating process. We suggest this phenomenon cannot be ascribed to a poly(amic acid) monolayer adopts a flattened conformation is intercalated in the gallery upon thermal elimination of the solvent. And found it is irrelevant to the intercalation of PAA or PI molecules, but is primarily in consequence of the out-flow NMP together with the out-bound surfactants molecules, partial degradation of surfactants, and the re-aggregation of clays induced by the increasing concentration (volume fraction) of clays upon evaporation of NMP. For the effect of different methods of preparation, PI/clay nanocomposites prepared by monomer-diffusion into non-reactive clay (M) process show the higher relative oxygen permeation rate of 0.1, and Td.max of 11 0C as compared to that of hybrids synthesized by polymer-diffusion process. For the effect of different clays, properties of PI/clay nanocomposites prepared by a reactive layered silicic acid of hydrogen-magadiite (H) and nonreactive clay of montmorillonite were studied. The latter displayed a higher Td.max of 7 0C, and the lower relative oxygen permeation rate of 0.07 as compared to the former, demonstrating the better improvement on thermal, and gas barrier properties.
目次 Table of Contents
Chapter 1 Introduction
1.1 Characteristics of nanocomposites……………...…………………….1
1.2 Preparation of nanocomposites………………………………….……1
1.3 Characteristics of polyimides…………………………………………5
1.4 Polyimide/organoclay nanocomposites……………………………….6
1.5 Research motivation and objectives..…………………………………6
Chapter 2 Literature review
2.1 Nylon 6/clay hybrid…………………………………………………13
2.2 Polyimide/clay nanocomposites…………………………………….16
2.2.1 Synthesis of polyimide/clay nanocomposites via polymer diffusion route…………………………………………………16
2.2.2 Intercalation behavior of PI/clay nanocomposites…………….22
2.2.3 Synthesis of polyimide/clay nanocomposites via monomer diffusion route…………………………………………………31
2.2.4 Ehancement on the interaction force between the polyimide molecule and internal surface of clay……………………….....34
Chapter 3 Experimental
3.1 Materials……………………………………………………………..40
3.1.1 Clays…………………………………………………………...40
3.1.2 Surfactants……………………………………………………..40
3.1.3 Reagents……………………………………………………….40
3.2 Synthesis……………………………………………………………..40
3.2.1 Preparation of organoclay……………………………………...40
3.2.2 Synthesis of poly(amic acid)………………………………….42
3.2.3 Synthesis of polyimide/clay nanocomposites………………....42
3.2.4 In-situ polymerization (monomer diffusion) in non-reactive
clay (Montmorillonite)…………………………………….......45
3.2.5 Preparation of the coupling agent modified hydrogen-maga-
diite (AH)……………………………………………………....45
3.2.6 Preparation of the model compound of AH-PMDA…………...45
3.2.7 In-situ polymerization (monomer diffusion) in reactive clay (AH)…………………………………………………………....47

3.3 Instruments…………………………………………………………..47
Chapter 4 Results
4.1 Clay-loading effect…………………………………………………..49
4.2 Surfactant effect…………………………………………….……….51
4.2.1 Criteria of the selection of surfactants………………………...57
4.2.2 Thermally stable organoclay…………………………………..59
4.2.3 Organoclays eith improved affinity to polyimide……………..63
4.3 Role of solvent………………………………………………………64
4.3.1 Thermal stability of surfactant, clay, and organoclay…………64
4.3.2 Characterization of organoclays and PI/clay nanocomposites...71
4.3.3 Examination of the contraction in galleries of clay…………...71
4.4 Clay effect………………………………………………………...…77
4.4.1 In-situ polymerization (monomer diffusion) into non-
reactive clay………………………………… ………………..78
4.4.2 In-situ polymerization (monomer diffusion) into reactive clay…………………………………………………………….81
Chapter 5 Discussion
5.1 Threshold of clay-loading of PI/clay nanocomposites………………85
5.2 Relationship between gas permeation rate and dispersion of clays…87
5.3 Intercalation behavior of PAA/clay hybrids affected by solvent…….89
5.3.1 Clay gallery contraction…………………………………….…89
5.3.2 Impact on the mechanism of the structural formation of PI/ clay nanocomposites…………………………………………..93
5.4 Interfacial activity of PI/clay nanocomposites……………………....94
5.4.1 Polymer diffusion into nonreactive clay……………..………..94
5.4.2 Monomer diffusion into nonreactive clay…………………....95
5.4.3 Monomer diffusion into reactive clay………………………..95
5.5 Remarks on the synthesis of PI/clay nanocomposites……………...97
Chapter 6 Conclusion………………………………………………………..99
Chapter 7 Future work…………………………………………………...…101
References………………………………………………………………..……….102
Appendix………………………………………………………………………… 109

List of Tables

Table 1.1 Notional structure and chemistry of smectites commonly used in PLSNs
Table 1.2 Typical properties of polyimide
Table 2.1 Mechanical properties of nylon 6 and nylon 6/ clay hybrid
Table 2.2 Effect of C16-MMT content on thermal solubility of PBO/C16-MMT hybrids
Table 2.3 Tensile properties of PBO/C16-MMT hybrids films
Table 2.4 Literature survey of polyimide/clay nanocomposites
Table 3.1 Data sheet of surfactants
Table 4.1 Thermal properties of PI12M nanocomposites
Table 4.2 d-spacing of organoclays and dispersion of organoclays in NMP


List of Figures

Figure 1.1 The structure of montmorillonite.
Figure 1.2 Dispersing behavior of montmorillonite.
Figure 1.3 Scheme of different types of composite arising from the interaction of layered silicates and polymers.
Figure 1.4 Scheme of the polyimide synthesis.
Figure 1.5 Research scheme of PI/silicate nanocomposites.
Figure 2.1 TEM micrograph of sections of NCH samples.
Figure 2.2 XRD patterns of NCH.
Figure 2.3 X-ray diffraction curves of polyimide-clay hybrid.
Figure 2.4 TEM of section of polyimide-clay hybrid.
Figure 2.5 XRD patterns of organoclay of OMMT and PI/clay nanocomposites.
Figure 2.6 XRD patterns of PBO/C16-MMT hybrids as a function of organo-clay loading.
Figure 2.7 TEM photographs of PBO/clay hybrids.
Figure 2.8 The X-ray diffraction curves of the soluble polyimide/clay hybrids.
Figure 2.9 A TEM micrograph of a cross section of the polyimide/clay nanocomposite 4KF/SBA-6FDA.
Figure 2.10 XRD patterns (Cu Kα) of polymer-CH3(CH2)n-1NH3+ montmorillonites composites.
Figure 2.11 CO2 permeability of polyinide-clay composites.
Figure 2.12 TEM photo of 3 % clay PI films showing exfoliated clays.
Figure 2.13 TEM photo of 3 % clay PI films showing some collapsed clays
Figure 2.14 XRD patterns of air cured PI thin film samples.
Figure 2.15 XRD patterns of organoclay treated at different temperatures in air.
Figure 2.16 XRD patterns of organoclay (O-MMT), PAA, and PI/O-MMT nanocomposites.
Figure 2.17 XRD patterns of PI and PI/clay.
Figure 2.18 TEM micrograph of the cross section of polyimide-organoclay at 1 wt%.
Figure 2.19 TEM micrograph of the cross section of polyimide-organoclay at 6 wt%.
Figure 2.20 TEM micrograph of the cross section of polyimide-organoclay at 9 wt%.
Figure 2.21 TEM photograph of MMT/PI hybrid containing 1 wt% of MMT.
Figure 2.22 X-ray diffraction curves of different compositions of (a) organoclay/PAA, and (b) organoclay/PI films.
Figure 2.23 Transmission electron micrographs of the cross sectional view of organoclay/PI films.
Figure 2.24 schematic drawing of the formation process of covalently bonded polyimide tethered layered silicates.
Figure 2.25 TEM micrographs of 3 wt% APTS-kenyaite/polyimide (BTDA-ODA).
Figure 3.1 Preparation of organoclay.
Figure 3.2 Preparation of polyimide/clay film via polymer diffusion route.
Figure 3.3 Preparation of the polyimide/clay film via monomer diffusion route.
Figure 3.4 Preparation of TEM specimen.
Figure 4.1 XRD patterns of PI (a), and PI12M.
Figure 4.2 TGA of PI and PI12M.
Figure 4.3 TMA of PI and PI12M.
Figure 4.4 Relative O2 permeation rate of PI12M nanocomposites.
Figure 4.5 FTIR spectra of PI, PAA, and PI12M.
Figure 4.6 TEM observation of PI12M with 12M of 0.2 wt%.
Figure 4.7 TEM observation of PI12M with 12M of 0.5 wt%.
Figure 4.8 TEM observation of PI12M with 12M of 1 wt%.
Figure 4.9 TEM observation of PI12M with 12M of 5 wt%.
Figure 4.10 TGA of PI and PI/surfactant.
Figure 4.11 TGA of organoclays 8M, and 12M.
Figure 4.12 TGA of derivative weight residue vs. temperature of 8M and 12M.
Figure 4.13 XRD patterns of M, 8M and 12M.
Figure 4.14 XRD patterns of PI and PI8M.
Figure 4.15 TGA of PI (a), and PI8M.
Figure 4.16 Relative O2 permeation rate of PI8M, PI12M.
Figure 4.17 TEM observation of PI8M nanocomposites.
Figure 4.18 TGA of organoclays, (a) 30B, (b) 12M, and (c) 18M.
Figure 4.19 XRD patterns of PI and PI30B.
Figure 4.20 XRD patterns of PI (a), and PI18M.
Figure 4.21 Gas permeability analysis of PI12M, PI18M, and PI30B.
Figure 4.22 Temperature at 10 wt% loss of PI12M, PI18M, and PI30B.
Figure 4.23 Storage modulus of PI, PI12M, PI18M, and PI30B.
Figure 4.24 TGA of the pristine clay M, surfactant (12), and organoclay 12M.
Figure 4.25 TGA of 12M of the as-imidized organoclay.
Figure 4.26 XRD patterns of clay and organoclays.
Figure 4.27 XRD patterns of PI and PI12M.
Figure 4.28 TEM observation of PI12M with 12M of 1 wt%.
Figure 4.29 XRD patterns of 12M/NMP of stock solution.
Figure 4.30 XRD patterns of PAA/12M (5 wt%) of stock solution.
Figure 4.31 XRD patterns of the as-imidized-in-NMP organoclays.
Figure 4.32 XRD patterns of the as-imidized clay and organoclays.
Figure 4.33 XRD patterns of PI and PI12MD with 12M.
Figure 4.34 Relative gas permeation rate of PI12M nanocomposites.
Figure 4.35 Temperature at 10 wt% loss of PI12M nanocomposites.
Figure 4.36 XRD patterns of APS/H-magadiite, H-magadiite, and the as-imidized H-magadiite.
Figure 4.37 29Si-NMR spectrum of APS/HM (AH).
Figure 4.38 XRD patterns of PI and PIAH.
Figure 4.39 Temperature at 10 wt% loss of PI12M and PIAH nanocomposites.
Figure 4.40 Relative gas permeation rate of PI12M and PIAH nanocomposites.
Figure 4.41 Storage modulus PI, PIAH, and PI12M nanocomposites.
Figure 5.1 Relationship between aspect ratio and clay loading for idealized morphology of exfoliation.
Figure 5.2 Clay loading versus aspect ratio of clay for single layer, and tactoids.
Figure 5.3 Model for the path of a diffusing molecule through a polymer filled with square plate.
Figure 5.4 Experimental values and theoretical curves of gas permeability of PI12M.
Figure 5.5 Schematic diagram of clays dispersed in PI/clay film.
參考文獻 References
1. M. Alexandre, and P. Dubois, Mater. Sci. & Eng. 8, 1 (2000).
2. L. W. Carter, J. G. Hendricks, and D. S. Bolley, United States Patent No. 2,531,396 (1950).
3. S. Fugiwara, and T. Sakamoto, Japanese Patent Application No. 109,998 (1976).
4. A.Okada, M. Kawasumi, T. Kurauchi, and O. Kamigaito, Polym. Print. 28, 447 (1987).
5. A. Okada, Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuki, S. Sugiyama, T. Kurauchi, and O. Kamigatio, United States Patent No. 4,739,007 (1988).
6. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigatio, J. Mater. Res. 8, 1179 (1993).
7. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauhi, and O. Kamigaito, J. Polym. Sci. Polym. Chem. Ed. 31, 983 (1993).
8. H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, and D. R. Paul, Polymer, 42, 9513 (2001).
9. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigatio, J. Mater. Res. 8, 1185 (1993).
10. S. Hotta, and D. R. Paul, Polymer, 45, 7639 (2004).
11. Y. Kurokawa, H. Yasuda, and A. Oya, J. Mater. Sci. Lett. 15, 1481 (1996).
12. Y. Kurokawa, H. Yasuda, M. Kashiwagi, and A. Oya, J. Mater. Sci. Lett. 16, 1670 (1997).
13. A. Akelah, and A. Moet, J. Mater. Sci. 31, 3589 (1996).
14. S. T. Lin, Y. H. Hyun, H. J. Choi, Chem. Mater. 14, 1839 (2002).
15. T. Wang, L. Chen, Y. C. Chua, and X. Lu, J. Appl. Polym. Sci. 94, 1381 (2004).
16. M. S. Wang, and T. J. Pinnavaia, Chem. Mater. 6, 468 (1994).
17. I. J. Chin, T. T. Albrecht, H. C. Kim, T. P. Russell, and J. Wang, Polymer, 42, 5947 (2001).
18. G. H. Chen, X. Q. Chen, Z. Y. Lin, and W. Ye, J. Mater. Sci. Lett. 18, 1761 (1999).
19. X. Dai, J. Xu, X. Guo, Y. Lu, DY. Shen, N. Zhao, XD. Luo, and XL. Zhang, Macromolecules, 37, 5615 (2004).
20. W. J. Choi, S. H. Kim, Y. J. Kim, and S. C. Kim, Polymer, 45, 6045 (2004).
21. B. Han, A. I. Cheng, G. D. Ji, S. S. Wu, and J. Shen, J. Appl. Polym. Sci. 91, 2536 (2004).
22. P. B. Messersmith, and E. P. Giannelis, J. Polym. Sci: part A: Polym. Chem. 33, 1047 (1995).
23. J. Wen and G. L. Wilkes, Chem. Mater. 8, 1667 (1996).
24. H. Schmidt, J. Non-Cryst. Solids, 178, 302 (1994).
25. J. E. Mark, Polym. Eng. Sci. 36, 2905 (1996).
26. U. Shunbert, N. Husing, and A. Lorenz, Chem. Mater. 7, 2010 (1997).
27. Z. Wang, T. Lan, and T. J. Pinnavaia, Chem. Mater. 8, 2200 (1996).
28. E. P. Giannelis, J. Miner. Metals, & Materials Soc. 44, 28 (1996).
29. E. P. Giannelis, Adv. Mater. 8, 29 (1996).
30. A. Okada, A. Usuki, T. Kurauchi, and O. Kamigaito, ACS Symposium series, 585, 55 (1995).
31. P. C. Lebaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay. Sci. 15, 11 (1999).
32. R. A. Vaia, In: T. J. Pinnavaia, and G. W. Beall, editors. “Polymer-Clay Nanocomposites”, John Wiley & Sons Ltd, New York (2000).
33. A. Akelah, and A. Moet, J. Appl. Polym. Sci.: Appl. Polym. Symp. 55, 153 (1994).
34. M. Kato, and A. Usuki, In: T. J. Pinnavaia, and G. W. Beall, editors. “Polymer-Clay Nanocomposites”, John Wiley & Sons Ltd, New York (2000).
35. R. E. Grim, “Clay Mineralogy”, McGraw-Hill, New York (1968).
36. Y. Komori and K. Kuroda, In: T. J. Pinnavaia, and G. W. Beall, editors. “Polymer-Clay Nanocomposites”, John Wiley & Sons Ltd, New York (2000).
37. K. Yano, A. Usuki, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem. 31, 2493 (1993).
38. H. R. Kricheldorf, “Progress in Polyimide Chemstry I”, Springer-Verlag, Berlin (1999).
39. S. S. Schwartz and S. H. Goodman, “ Plastics Materials and Processes”, Van Nostrand Reinhold Company Inc. New York (1982).
40. M. Nandi, J. A. Conklin, L. Salvati, and A. Sen, Chem. Mater. 3, 201 (1991).
41. A. Morikawa, Y. Iyoku, M. A. Kakimoto, and Y. Imai, J. Mater. Chem. 2, 679 (1992).
42. S. Wang, Z. Ahmad, and J. E. Mark, Chem. Mater. 6, 943 (1994).
43. A. Morikawa, H. Yamaguchi, M. A. Kakimoto, and Y. Imai, Chem. Mater. 6, 913 (1994).
44. A. Kioul and L. Mascia, J. Non-Cryst. Solids. 175, 169 (1994).
45. P. Sysel, R. Pulec, and M. Maryska, Polym. J. 29, 607 (1997).
46. G. H. Hsiue, J. K. Chen, and Y. L. Liu, J. Appl. Polym. Sci. 76, 1609 (2000).
47. Z. Ahmad and J. E. Mark, Chem. Mater. 13, 332 (2001).
48. C. J. Cornelius, and E. Marand, Polymer, 43, 2385 (2002).
49. X. Y. Shang, Z. K. Zhu, J. Yin, and X. D. Ma, Chem. Mater. 14, 71 (2002).
50. C. T. Yen, W. C. Chen, D. J. Liaw, and H. Y. Lu, Polymer, 44, 7079 (2003).
51. B. K. Chen, T. M. Chiu, and S. Y. Tsay, J. Appl. Polym. Sci. 94, 382 (2004).
52. P. Musto, G. Ragosta, G. Scarinzi, and L. Mascia, Polymer, 45, 1697 (2004).
53. K. Yano, A. Usuki, A. Okada, and T. Kurauchi, US Pat, 5,164,460 (1992).
54. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, 573 (1994).
55. K. Yano, A. Usuki, T. Kurauchi, and O.Kamigaito, J. Polym. Sci. Part A: Polym. Chem. 35, 2289 (1997).
56. Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi,, Polymer, 40, 4407 (1999).
57. H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer, 40, 4877 (1999).
58. H. L. Tyan, Y. C. Liu, and K. H. Wei, Chem. Mater., 11, 1942 (1999).
59. H. L. Tyan, K. H. Wei, and T. E. Hsieh, J. Appl. Polym. Sci. 38, 2873 (2004).
60. H. L. Tyan, C. Y. Wu, and K. H. Wei, J. Appl. Polym. Sci. 81, 1742 (2001).
61. H. L. Tyan, C. M. Leu, and K. H. Wei, Chem. Mater., 13, 4 (2001).
62. J. H. Chang, K. M. Park, and D. H. Cho, Polym. Eng. Sci. 41, 1514 (2001).
63. R. Magaraphan, W. Lilayuthalert, A. Sirivat, and J. W. Schwank, Composites Sci. Tech. 61, 1253 (2001).
64. A. Gu, and F. C. Chang, J. Appl. Polym. Sci. 79, 289 (2001).
65. J. C. Huang, Z. K. Zhu, J. Yin, X. F. Qian, and Y. Y. Sun, Polymer, 42, 873 (2001).
66. T. Agag , T. Koga, and T. Takeichi , Polymer, 42, 3399 (2001).
67. J. H. Chang and K. M. Park, Polym. Eng. Sci. 41, 2226 (2001).
68. Z. K. Zhu, Y. Yang, J. Yin, X. Y. Wang, Y. C. Ke, and Z. N. Qi, J. Appl. Polym. Sci. 73, 2063 (1999).
69. J. H. Chang, D. K. Park, and K. L. Ihn, J. Polym. Sci.: Part B: Polym. Phys. 39, 471 (2001).
70. A. Gu, S. W. Kuo, and F. C. Chang, J. Appl. Polym. Sci. 79, 1902 (2001).
71. S. H. Hsiao, G. S. Liou, and L. M. Chang, J. Appl. Polym. Sci. 80, 2067 (2001).
72. J. K. Kim, R. Ahmed, and S. J. Lee, J. Appl. Polym. Sci. 80, 592 (2001).
73. D. M. Delozier, R. A. Orwoll, J. F. Cahoon, N. J. Johnsten, J. G. Smith, and J. W. Connell, Polymer, 43, 813 (2002).
74. D. S. Thompsom, D. W. Thompsom, and R. E. Southward, Chem. Mater. 14, 30 (2002).
75. A. Ranade, N. A. Souza, and B. Gnade, Polymer, 43, 3759 (2002).
76. M. O. Abdalla, D. Dean, and S. Campbell, Polymer, 43, 5887 (2002).
77. S. L. C. Hsu, and K. C. Chang, Polymer, 43, 4097 (2002).
78. J. H. Chang, D. K. Park, and K. L. Ihn, J. Appl. Polym. Sci. 84, 2294 (2002).
79. L. Y. Jiang, C. H. Leu, and K. H. Wei, Adv. Mater. 14, 426 (2002).
80. L. Y. Jiang, and K. H. Wei, J. Appl. Phys. 92, 6219 (2002).
81. L. J. Bian, X. F. Qian, J. Yin, Z. K. Zhu,and Q. H. Lu, J. Appl. Polym. Sci. 86, 2707 (2002).
82. C. M. Leu, Z. W. Wu, and K. H. Wei, Chem. Mater. 14, 3016 (2002).
83. S. L. C. Hsu, U. Wang, J. H. King, and J. L. Jeng, Polymer, 44, 5533 (2003).
84. Z. M. Liang, J. Yin, and H. J. Xu, Polymer, 44, 1391 (2003).
85. O. Khayankarn, R. Magaraphan, and J. W. Schwank, J. Appl. Polym. Sci. 89, 2875 (2003).
86. B. P. Lin, H. J. Liu, and S. X. Zhang, J. Solid State Chem. 177, 3849 (2004).
87. D. M. Delozier, R. A. Orwoll, J. F. Cahoon, J. S. Ladislaw, J. G. Smith Jr, and J. W. Connell, Polymer, 44, 2231 (2003).
88. H. B. Hsueh, C. Y. Chen, Polymer, 44, 1151 (2003).
89. Z. M. Liang, J. Yin, H. J. Xu, Z. X. Qiu, and F. F. He, Euro.Polym. J. 40, 307 (2004).
90. C. W. Nah, S. H. Han, J. H. Lee, M. H. Lee, S. D. Lin, and J. M. Rhee, Composites: Part B, 35, 125 (2004).
91. L. W. Qu, Y, Lin, D. E. Hill, B. Zhou, W. Wang, X. F. Sun, A. Kitaygorodskiy, M. Suarez, J. W. Connell, L. F. Allard, and Y. P. Sun. Macromolecules, 37, 6055 (2004).
92. L. Y. Jiang and K. H. Wei, J. Appl. Polym. Sci. 92, 1422 (2004).
93. Y. H. Yu, J. M. Yeh, S. J. Liou, and Y. P. Chang, Acta Materialia, 52, 475 (2004).
94. J. M. Yeh, C. L. Chen, T. H. Kuo, W. F. Su, H. Y. Huang, D. J. Liaw, H. Y. Lu, C. F. Liu, and Y. H. Yu, J. Appl. Polym. Sci. 92, 1072 (2004).
95. Y. H. Yu, J. M. Yeh, S. J. Liou, C. L. Chen, D. J. Liaw, and H. Y. Lu, J. Appl. Polym. Sci. 92, 3573 (2004).
96. Y. H. Zhang, J. T. Wu, S. Y. Fu, S. Y. Yang, Y. Li, L. Fan, R. K. Y. Li, L. F. Li, Q. Yan, Polymer, 45, 7579 (2004).
97. C. W. Nah, S. H. Han, J. H. Lee, M. H. Lee, and K. H. Chung, Polym. Int. 53, 891 (2004).
98. Y. H. Zhang, Z. M. Dang, S. Y. Fu, J. H. Xin, J. G. Deng, J. Wu, S. Yang, L. F. Li, and Q. Yan, Chem. Phys. Lett. 401, 553 (2005).
99. J. M. Yeh, C. F. Hsieh, J. H. Jaw, T. H. Kuo, H. Y. Huang, C. L. Lin, and M. Y. Hsu, J. Appl. Polym. Sci. 95, 1082 (2005).
100. E. P. Giannelis, Adv. Mater. 8, 29 (1996).
101. E. P. Giannelis, Appl. Organometal. Chem. 12, 675 (1998).
102. S. S. Ray and M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003).
103. P. Calvert, Nature, 383, 300 (1996).
104. D. L. Ho, and C. J. Glinka, Chem. Mater. 15, 1309 (2003).
105. J. W. Gilman, W. H. Awad, R. D. Davis, J. Shields, R. H. Harris, C. Davis, A. B. Morgan, T. E. Suto, J. Callahan, P. C. Trulove, and H. C. DeLong, Chem. Mater. 14, 3776 (2002).
106. H. van Olphen, “An Introduction to Clay Colloid Chemistry “ Chapter 5, John Wiley and Sons, New York (1977).
107. C. E. Blaison, B. Humbert, L. J. Michot, M. Pelletier, E. Sauzeat, and F. Villieras, Chem. Mater. 13, 4439 (2001).
108. L. E. Nielsen, J. Macromol. Sci. Chem. A1, 5, 929 (1967).
109. S. Pauly, In: J. Brandrup and E. H. Immergut, Editors, “Polymer Handbook”, Interscience, New York, 2nd ed. (1975).
110. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001).
111. G. H. Fredrickson and J. Bicerano, J. Chem. Phys. 110, 2181 (1999).
112. A. A. Gusev and H. R. Lusti, Adv. Mater. 13, 1642 (2001).
113. M. A. Osman, V. Mittal, and H. R. Lusti, Macromol. Rapid Commun. 25, 1145 (2004).
114. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci. Part A: Polym. Chem., 33, 1047 (1995).
115. D. F. Eckel, M. P. Balogh, P. D. Fasulo, and W. R. Rodgers, J. Appl. Polym. Sci. 93, 1110 (2004).
116. W. Zhou, J. E. Mark, M. R. Unroe, and F. E. Arnold, J. Macromol. Sci. Pure Appl. Chem. A 38, 1 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.244.83
論文開放下載的時間是 校外不公開

Your IP address is 3.143.244.83
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code