Responsive image
博碩士論文 etd-0705106-204644 詳細資訊
Title page for etd-0705106-204644
論文名稱
Title
以低溫比熱研究NbSe2之超導配對對稱態
Superconducting Paring State in NbSe2: A Low Temperature Specific Heat Study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-17
繳交日期
Date of Submission
2006-07-05
關鍵字
Keywords
超導配對對稱態、低溫比熱
paring state, Low temperature specific heat, NbSe2
統計
Statistics
本論文已被瀏覽 5718 次,被下載 2203
The thesis/dissertation has been browsed 5718 times, has been downloaded 2203 times.
中文摘要
傳統超導體可以以BCS &#63972;&#63809;解釋(Tc<35K),但隨著&#63955;續發現
超導體的Tc 溫&#64001;之增加,BCS &#63972;&#63809;已無法解釋所有超導體之超導
特性,故有其他&#63972;&#63809;之提出,如 d-波(d-wave)、線結( line nodes)、點結(the point nodes)、s +g 波( s +g wave),以及雙能隙模型(two-gap)等。繼以two-gap 模型成功解釋MgB2 後,我們亦試圖以低溫比熱的方法&#63870;測2H-NbSe2,由其比熱&#64008;為的分析探討是否雙能隙模型也可成功應用於NbSe2。並據此分別得出&#63864;個大小能隙值;且觀察到其電子比熱項(γT)的係&#63849;γ 與磁場H 的非線性關係。再者,由超導&#63990;界溫&#64001;與上&#63990;界磁場的關係圖可看出在低磁場時有正曲&#63841;的特性,此與在雙能隙超導體MgB2 所觀察到的一致。因
此,用雙能隙模型&#63789;解釋NbSe2 超導配對對稱態是優於用傳統
s-wave(BCS)及用線結(line nodes) 模型解釋的。
Abstract
Conventional superconductor could be explained by BCS theory (for Tc<35K), but the BCS theory is not valid for all superconductors with theincrease of critical temperature (Tc) in the continuous discovery of new
superconductors. Later on, other theories, such as d-wave, line nodes, the point nodes, the s +g wave, the two gap model, have been proposed. After successfully applying the two-gap model on MgB2, we try to measure the magnetic field dependence of low-temperature specific heat on 2H-NbSe2. Subsequently, analysis is focused on checking whether the two-gap model could also be applied to NbSe2 .
Based on this model, the corresponding two gap values are obtained. The nonlinear field dependence of electronic specific heat coefficient is also observed. Moreover, the positive curvature in Hc2(T) is similar to that in the other two-gap superconductor MgB2. Thus, the two-gap model
appears to describe the superconducting gap function of 2H-NbSe2 better than s-wave and line nodes models.
目次 Table of Contents
圖目&#63807;…………………………………………………………………...i
表目&#63807;…………………………………………………………………..v
第一章 簡介………………………………………………………….1
1. NbSe2結構與特性…………………………………………….1
2. 研究動機……………………………………………………..4
第二章 基本比熱&#63972;&#63809;……………………………………………..9
1.晶格比熱……………………………………………………....9
2.電子比熱……………………………………………………..10
3. Schottky 比熱………………………………………………...11
4. d-wave 模型預測…………………………………………….11
5. BCS 模型&#63972;&#63809;……………………………………………….12
6. 線結(line-node)模型………………………………………...13
7. 雙能隙(two-gap)模型…..…………………………………...14
第三章 實驗方法…………………………………………………..16
1. 樣品製作…………………………………………………..16
2. 熱脈衝弛張法比熱儀……………………………………..18
(1) 比熱儀系統......................................................................18
(2) 操作方法………………………………………………..23
(3) 操作原&#63972;………………………………………………..36
3. 超導&#63870;子干涉磁&#63870;儀(SQUID Magnetometer).................41
(1) 元件基本原&#63972;…………………………………………..41
(2) SQUID 磁&#63870;儀之操作特性…………………………….43
(3) 測&#63870;結果範&#63925;…………………………………………..47
第四章 實驗結果與分析…………………………………………49
1. X-ray 繞射相圖的分析………………………………………49
2.低溫比熱的測&#63870;……………………………………………...51
(1) 比熱儀器系統的校正………………………………….51
(2) 樣品比熱的測&#63870;與分析……………………………….56
第五章 討&#63809;與結&#63809;……………………………………………….84
1.實驗結果之比較……………………………………………...84
2. SQUID 磁&#63870;儀之M-T 的測&#63870;………………………………90
&#63851;考資&#63934;………………………………………………………………93
參考文獻 References
&#65339;1&#65341;J. M. E. Harper, T. H. Geballe, and F. J. DiSalvo, Phys. Rev. B 15,
2943 (1977).
&#65339;2&#65341;A. N. Enyashin, V. V. Ivanovskaya, I. R. Shein, Yu. N. Makurin, N. I.
Medvedeva, A. A. Sofronov, and A. L. Ivanovskii, J. Struc. Chem.,
45, 547 (2004).
&#65339;3&#65341;L. Perfetti, T. A. Gloor, H. Berger, and M. Grioni, Phys. Rev. B 71,
153101 (2005).
&#65339;4&#65341;D. Sanchez, A. Junod, J. Muller, H. Berger, F. Levy, Physica B 204,
167 (1995).
&#65339;5&#65341;J. R. Schrieffer, “Theory of Superconductivity” (Perseus Books,
Reading, MA, 1983).
&#65339;6&#65341;T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, and H. Takagi,
Science 294, 2518 (2001).
&#65339;7&#65341;M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao,
Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908
(1987).
&#65339;8&#65341;J.-Y. Lin, P. L. Ho, H. L. Huang, P. H. Lin, Y.-L. Zhang, R.-C. Yu,
C.-Q. Jin, and H. D. Yang, Phys. Rev. B 67, 052501 (2003).
&#65339;9&#65341;K. Iwaya, T. Hananguri, A. Koizumi, K. Takaki, A. Maeda, and K.
Kitazawa, Physica B 329, 1598 (2003).
&#65339;10&#65341;Z.-X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer,
A. J. Arko, D.Marshall, S. Doniach, J. DiCarlo, T. Loeser, and C.
H. Park, Phys. Rev. Lett. 70, 1553 (1993).
&#65339;11&#65341;H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F.Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki,
Phys. Rev. B 54, R9678 (1996).
&#65339;12&#65341;J. E. Sonier, M. F. Hundley, J. D. Thompson, and J. W. Brill, Phys.
Rev. Lett. 82, 4914 (1999).
&#65339;13&#65341;Etienne Boaknin, M. A. Tanatar, Johnpierre Paglione, D.Hawthorn
F. Ronning, and R. W. Hill, Phys. Rev. Lett. 90, 117003 (2003).
&#65339;14&#65341;J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J.
Akimitsu, Nature (London) 410, 63 (2001).
&#65339;15&#65341;S. L. Bud,ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N.
Anderson, and P. C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).
&#65339;16&#65341;H. D. Yang, J.-Y. Lin, H. H. Li, F. H. Hsu, C. J. Lin, S.-C. Li, R.-C.
Yu, and C.-Q. Jin, Phys. Rev. Lett. 87, 167003 (2001).
&#65339;17&#65341;S. V. Shulga, S.-L. Drechsler, H. Eschrig, H. Rosner, and W. Pickett, con-mat/0103154
&#65339;18&#65341;A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
&#65339;19&#65341;G. Rubio-Bollinger, H. Suderow, and S. Vieira, Phys. Rev. Lett.
86, 5582 (2001).
&#65339;20&#65341;M. R. Eskildsen, M. Kugler, S. Tanaka, J. Jun, S. M. Karpinski,
and &Oslash;. Fischer, Phys. Rev. Lett. 89, 187003 (2002).
&#65339;21&#65341;Y. Wang, T. Plackowski, and A. Junod, Physica (Amsterdam)355C,
179 (2001).
&#65339;22&#65341;F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D.
Jorgensen, Phys. Rev. Lett. 87, 047001 (2001).
&#65339;23&#65341;F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A.Junod, and N. E. Phillips, Europhys. Lett. 56, 856 (2001).
&#65339;24&#65341;F. Manzano, A. Carrington, and N. E. Hussey, H. H. Wills, S. Lee,
A. Yamamoto, and S. Tajima, Phys. Rev. Lett. 88, 047002 (2001).
&#65339;25&#65341;F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, and A. Junod,
Phys. Rev. Lett. 89, 257001 (2002).
&#65339;26&#65341;P. Szab&oacute;, P. Samuely, J. Ka&#269;mar&#269;&iacute;k, T. Klein, J. Marcus, D.
Fruchart, S. Miraglia, C. Marcenat, and A. G. M. Jansen, Phys.
Rev. Lett. 87, 137005 (2001).
&#65339;27&#65341;X. K. Chen, M. J. Konstantinovi&#263;, J. C. Irwin, D. D. Lawrie, and J.
P. Franck, Phys. Rev. Lett. 87, 157002 (2001).
&#65339;28&#65341;F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, and J.
Klein, Phys. Rev. Lett. 87, 177008 (2001).
&#65339;29&#65341;H. Schmidt, J. F. Zasadzinski, K. E. Gray, and D. G. Hinks, Phys.
Rev. Lett. 88, 127002 (2002).
&#65339;30&#65341;M. Iavarone, G. Karapetrov, A. E. Koshelev, G. W. Crabtree, and D.
G. Hinks, Phys. Rev. Lett. 89, 187002 (2002).
&#65339;31&#65341;H. Suhl, B.T. Matthias, and L.R. Walker, Phys. Rev. Lett. 3, 552
(1959)
&#65339;32&#65341;N. Nakai, P. Miranovic, M. Ichioka, and K. Machida, Phys. Rev. B
70, 100503I (2004)
&#65339;33&#65341;C. L. Huang, J.-Y. Lin, C. P. Sun, T. K. Lee, J. D. Kim, E. M. Choi,
S. I. Lee, and H. D. Yang, Phys. Rev. B 73, 012512 (2006)
&#65339;34&#65341;F. L&Eacute;VY and H. Berger, J. Cryst. Growth 61, 61 (1983)
&#65339;35&#65341;C. S. Oglesby, E. Bucher, C. Kloc, and H. Hohl, J. Cryst. Growth
137, 289 (1994)
&#65339;36&#65341;S. S. Banerjee, N. G. Patil, K. Ghosh, S. Saha, G. I. Menon,
S. Ramakrishnan, A. K. Grover, P. K. Mishra, T. V. Chandrasekhar
Rao, G. Ravikumar, V. C. Sahni, C. V. Tomy, G. Balakrishman, D.
Mck Paul, and S. Bhattacharya, Physica B 237-238, 315 (1997)
&#65339;37&#65341;P. Garoche, J. J. Veyssie, P. Manuel, and P. Molinie, Solid State
Commun. 19, 455 (1976).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code