Responsive image
博碩士論文 etd-0705110-125408 詳細資訊
Title page for etd-0705110-125408
論文名稱
Title
非同步多跳隨意無線網路中最佳完全動態調適之電源管理協定
Optimal Fully Adaptive Power Management Protocols for Asynchronous Multi-Hop Ad Hoc Wireless Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-15
繳交日期
Date of Submission
2010-07-05
關鍵字
Keywords
電源管理、媒介存取控制、無線隨意網路
802.11
統計
Statistics
本論文已被瀏覽 5624 次,被下載 0
The thesis/dissertation has been browsed 5624 times, has been downloaded 0 times.
中文摘要
在多跳躍的無線隨意網路(multi-hop MANET)裡頭,同步是困難的。在無法同步的情況之下,IEEE 802.11的電源管理機制可能無法正常運作。為此,文獻 [8, 12, 15, 16] 提出了各種cyclic quorum-based power management(簡寫為CQPM)協定來克服同步的問題。然而這些CQPM協定要求所有的power-saving(簡寫為PS)stations都必須使用相同的schedule repetition interval(簡寫為SRI)。這意味著從duty cycle的觀點來看,它們都無法動態調適。為此文獻 [1] 提出了第一個具有動態調適SRI功能的電源管理協定,稱之為AQEC。然而AQEC的動態調適能力很低。為此文獻 [14] 提出了完全動態調適的電源管理協定,稱之HQS。然而在HQS裡頭,station的duty cycle卻不是最佳的。為此,我們提出了最佳化完全動態調適電源管理協定(稱之為OFAA),它具有下列特點: (i)藉由新的beacon interval結構,以及factor-hereditary quorum space技術,使得station在無法同步的情況之下,仍可使用不同的SRI,並保證可在有限的時間內互相發現鄰居。 (ii) 給定一個最大的SRI值,Smax,則每一個station可動態調控的SRI數目為Smax。 (iii) 對每個SRI來說,其idle duty cycle皆達理論最小值。(iv) OFAA的neighbor maintenance所需的時間複雜度僅為O(1)。(v) 基於OFAA,我們設計一個cross-layer的SRI調控機制,可以設定適合的SRI值來最大化省電的效果,同時也能滿足flow delay的需求。理論分析及模擬實驗結果皆顯示,OFAA明顯優於AQEC [1] 及HQS [14]。
Abstract
In a multi-hop mobile ad hoc network (MANET), IEEE 802.11 power management may fail if power-saving (PS for short) stations are out of synchronization. To fix this problem, [8, 12, 15, 16] proposed various cyclic quorum-based power management (CQPM) protocols, which, however, may also completely fail if some PS stations have different schedule repetition intervals (SRIs). This implies that, from the viewpoint of duty cycle, CQPM is non-adaptive. Hence the authors of [1] proposed the first adaptive power management protocol, called AQEC. However, in AQEC, the values of SRI must be squares. This implies the adaptiveness (i.e., the number of tunable SRIs) of AQEC is very limited. Hence the authors of [14] proposed the first fully adaptive power management protocol, called HQS. However, in HQS, the duty cycle of a station is not optimal. To conquer all these problems, we propose the OFAA (optimal fully adaptive asynchronous) power management protocol, which has the following attractive features. (i) By means of novel beacon interval structures and the factor-hereditary quorum space techniques, OFAA ensures that two PS neighbors can discover each other in finite time regardless of their clock difference and their individual SRIs. (ii) Given the maximum SRI, Smax, the number of tunable SRIs for every PS station is Smax. (iii) The idle duty cycles for all SRIs are minimal. (iv) The time complexity of OFAA neighbor maintenance is constant. (v) A cross-layer SRI adjustment scheme is proposed such that a PS station can adaptively tune its SRI according to traffic QoS requirements. Both theoretical analysis and simulation results show that OFAA achieves better energy efficiency than existing adaptive CQPM protocols, including AQEC [1] and HQS [14].
目次 Table of Contents
碩士論文 i
中文學位論文審定書 ii
英文學位論文審定書 iii
摘要 iv
誌謝 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 IEEE 802.11電源管理 1
1.2 挑戰 2
1.3 文獻回顧 3
1.4 貢獻 6
第二章 OFAA協定 9
2.1 新的Beacon Intervals結構 9
2.2 Neighbor Maintenance的處理 10
第三章 OFAA效能分析 17
3.1 Duty Cycle 17
3.2 Average Neighbor Discovery Time 20
第四章 Cross-Layer的SRI調控程序 24
第五章 模擬器的設計與實作 28
第六章 模擬實驗結果 78
第七章 結論 107
參考文獻 108
附錄 110
參考文獻 References
[1] C.-M. Chao, J.-P. Sheu, and I-Cheng Chou, “An Adaptive Quorum-Based Energy Conserving Protocol for IEEE 802.11 Ad Hoc Networks,” IEEE Trans. on Mobile Computing, Vol. 5, No. 5, pp. 560–570, May 2006.
[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. McGraw-Hill, pp. 347, December 2003.
[3] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem: Applications in Computing Coding, Cryptography. World Scientific Publishing Company, 1996.
[4] L.M. Feeney and M. Nilsson, “Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking Environment,” in Proceedings of IEEE INFOCOM, pp. 1548–1557, April 2001.
[5] Z. J. Haas and M. R. Perlman, “ZRP: A Hybrid Framework for Routing in Ad Hoc Networks,” Ad Hoc Networking, Chapter 7, Addison-Wesley Inc., pp. 221–253, 2001.
[6] L. Huang and T-.H. Lai, “On the Scalability of IEEE 802.11 Ad Hoc Networks,” in Proceedings of ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2002), pp. 173–182, June 2002.
[7] IEEE 802.11 Standard, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE, November 1999.
[8] J.-R. Jiang, Y.-C. Tseng, C.-S. Hsu, and T.-H. Lai, “Quorum-Based Asynchronous Power-Saving Protocols for IEEE 802.11 Ad Hoc Networks,” ACM Journal on Mobile Networks and Applications, Vol. 10, pp 169–181, 2005.
[9] R. Kravets and P. Krishnan, “Application-Driven Power Management for Mobile Communication,” Wireless Networks, Vol. 6, pp. 263–277, 2000.
[10] M. J. Miller and N. H. Vaidya, “Ad Hoc Routing for Multilevel Power Save Protocols,” Elsevier Ad Hoc Networks, Vol. 6, pp. 210–225, 2008.
[11] D. R. Stinson, Combinatorial Designs: Constructions and Analysis. Springer-Verlag New York, Inc., 2004.
[12] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks,” in Proceedings of IEEE INFOCOM, pp. 200–209, 2002.
[13] Y. Wang, X. Liu , J. Ning, J. Yin, and Y. Wu, “Algorithms for Delay Constrained and Energy Efficiently Routing in Wireless Sensor Network,” Lecture Notes in Computer Science, Vol.4138, No.1, pp. 632–642, October 2006.
[14] S.-H. Wu, M.-S. Chen, and C.-M. Chen, “Fully Adaptive Power Saving Protocols for Ad Hoc Networks Using the Hyper Quorum System,” in Proceedings of IEEE International Conference on Distributed Computing Systems,” pp. 785–792, June 2008.
[15] S.-L.Wu, P.-C. Tseng, and Zi-Tsan Chou, “Distributed Power Management Protocols for Multi- Hop Mobile Ad Hoc Networks,” Elsevier Computer Networks, Vol. 47, pp. 63–85, 2005.
[16] R. Zheng, J. Hou, and L. Sha, “Optimal Block Design for Asynchronous Wake-Up Schedules and Its Applications in Multihop Wireless Networks,” IEEE Trans. on Mobile Computing, Vol. 5, No. 9, pp. 1228–1242, September 2006.
[17] B. Karp and H.T.Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” in Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pp. 243–254, August 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.98.71
論文開放下載的時間是 校外不公開

Your IP address is 18.221.98.71
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code