Responsive image
博碩士論文 etd-0705110-182719 詳細資訊
Title page for etd-0705110-182719
論文名稱
Title
Eu2O3 奈米粒子與二氧化矽之複合物之磁性與介電性研究
Studies of magnetic and dielectric properties on Eu2O3 nanoparticles embedded in silica matrix
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-05
繳交日期
Date of Submission
2010-07-05
關鍵字
Keywords
氧化銪、奈米粒子、磁介電效應、擴散相變、介電係數、超順磁
superparamagnetism, nanoparticles, Eu2O3, magnetodielectric, diffuse phase transition, dielectric
統計
Statistics
本論文已被瀏覽 5737 次,被下載 1570
The thesis/dissertation has been browsed 5737 times, has been downloaded 1570 times.
中文摘要
我們藉由溶膠凝膠法在700℃以及更高溫度合成0.5%莫耳濃度,氧化銪參雜於二氧化矽基底之奈米粒子複合物,並且對其做了X-ray、TEM、磁性和介電係數等實驗。由X-ray 和TEM 研究得知此一複合物的粒子大小介於4-8 奈米之間,且粒子大小隨合成溫度升高而增大。磁性對溫度以及磁滯曲線的研究中,此一複合物展現了超順磁相。介電係數的研究中顯示高介電係數值,並且在介電係數對溫度的關係圖中,於270 K 展現出寬廣的峰值是為擴散相變。磁電偶合實驗中,此一系統顯現出負的磁介電效應,在9 T 的磁場下2.5 kHz 時介電常數降低約為零場1.5 倍,推測是由於磁場影響奈米粒子的電阻造成的磁阻效應造成的,此現象會由於改變參雜的粒子大小而產生改變。我們推測這些現象的成因是由於化合物的氧空缺之熱效應造成的。這種高介電係數並展現出磁介電效應材料在將來應用上有相當大的潛力。
Abstract
Magnetic nanocrystalline Eu2O3 (0.5 mol %) particles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700oC and above. X-ray and TEM studies reveal the nanocrystals with mean sizes in the range 4–8 nm, larger in the samples calcined at higher temperatures. The magnetization and magnetic hysteresis of Eu2O3 nanocrystals in the temperature range of 2-300K have demonstrated that the Eu2O3 nanocrystals in these glasses display superparamagnetic state. The temperature dependence of dielectric constant curves demonstrate a broad maximum around Tm ~ 270 K characteristic by diffuse phase transition (DPT). At the highest applied magnetic field 9 tesla, at superparamagnetic phase, the dielectric constant around Tm decreases almost ~ 1.5 (at 2.5 kHz) times compared with that at zero field for the sample calcined at 700℃ (~2 nm). The magnetodielectric effect observed in the glass composite is considered to be affected with the direct consequence of magnetoresistance changes which depends on the magnetic nanoparticle size and separation. Combustion mechanism is closely relate to the thermally activation oxygen vacancy. Such a material might be treated as a potential candidate for device miniaturization.
目次 Table of Contents
Content
Abstract……………………………………………………………………………3
論文摘要…………………………………………………………………………4
Content……………………………………………………………………………5
List of figures……………………………………………………………………7
List of tables……………………………………………………………………9
Chapter 1: Introduction……………………………………………………10
1.1 General introduction …………………………………………………10
1.2 Motivation………………………………………………………………12
1.3 Magnetic and dielectric property of materials…………………14
1.3.1 A Brief Resume on the Magnetism of Nano-magnetic Materials14
1.3.2 Dielectric property………………………………………………22
Chapter 2: Experimental methods and instrumentation……31
2.1 Sample preparation…………………………………………………31
2.1.1 Physical methods…………………………………………………31
2.1.2 Chemical methods………………………………………………33
2.2 XRD and TEM measurements…………………………………37
2.2.1 XRD measurements…………………………………………………37
2.2.2 TEM measurements………………………………………………40
2.3 Magnetic measurements……………………………………………44
2.3.1 Zero-field-cooled magnetization (MZFC) measurements………47
2.3.2 Field-cooled magnetization (MFC) measurements…………………49
2.3.3 Hysteresis measurements……………………………………50
2.4 Dielectric measurements……………………………………………51
Chapter 3: Results and discussion……………………………………54
3.1 Sample characterization by TEM and XRD……………………54
3.2 Magnetic properties…………………………………………………57
3.3 Dielectric properties…………………………………………………61
Chapter 4: Conclusion……………………………………………………69
References………………………………………………………………………70
參考文獻 References
[1] W. Eisenstein, N. D. Mathura and J. F. Scott, Nature 442, 759, (2006); J. F. Scott, Science 315, 954, (2007).
[2] P. K. Park, E. Cha, and S. Kang, Appl. Phys. Lett. 90, 232906 (2007).
[3] K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996)
[4] M. Copel, M. A. Gribelyuk and E. Gusev, Appl. Phys. Lett., 76, 436 (2000).
[5] G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis, A. Pinczuk, G. Redinho, R. Urdahl, E. Ong and S. Hasan, Appl. Phys. Lett., 72, 1308(1998).
[6] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol and G. N. Parsons, Appl. Phys. Lett., 75, 4001(1999).
[7] G. Lippert, J. Dabrowski, V. Melnik, R. Sorge, Ch. Wenger, P. Zaumseil and H.-J. Müssig, Appl. Phys. Lett., 86, 042902 (2005).
[8] R. Lo. Nigro, R. G. Toro, G. Malandrino, V. Raineri and I. L. Fragalà, Adv. Mater.,n 15, 1071(2003).
[9] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science, 303, 661 (2004).
[10] M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, C. Simon and C. Fleta, Nanotechnology, 17, 687 (2006).
[11] D. S. Rana, I. Kawayama, K. Mavani, K. akahashi, H. Murakami and M. Tonouchi, Adv. Mater., 21, 2881 (2009).
[12] W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott and N. D. Mathur, Science, 307, 1203 (2005)
[13] H. J. Osten, M. Czernohorsky, R. Dargis, A. Laha, D. Kühne, E. Bugiel and A. Fissel, Microelectron. Eng. 84, 2222 (2007).
[14] J. D. Olivas and S. Bolin, JOM 50, 38 (1998).
[15] S. M. Spearing, Acta Mater. 48, 179 (2000).
[16] P.V. Gundy, Inc.Annual Information, 2, (2005).
[17] B. Antic, M. Mitric and D. Rodic, J. Phys.: Condens. Matter 9, 365 (1997).
[18] S. P. Feofilo, Phys. Solid State, 44, 8, 1407 (2002).
[19] N. D. Afify and G. Mountjoy, Phys. Rev. Lett. B 79, 024202 (2009).
[20] C. J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley, J. Non-Cryst Solids, 48, 47 (1982).
[21] D. M. Krol and J. G. Van Lierop, J. Non-Cryst Solids 63, 131 (1984).
[22] A. Bouajaj, thesis, University Claude Bernard Lyon (1994).
[23] J. L. Rousset, E Duval, A. Boukenter, B. Champagnon, A. Monteil, J. Serughetti and J. Dumas, J. Non-Cryst. Solids 107, 27 (1988).
[24] C. Kittel, Phys. Rev. 70, 965 (1946).
[25] C. P. Bean, J. Appl. Phys. 26, 1381 (1955).
[26] C. P. Bean and J. D. Livingstone, J. Appl. Phys. 30, 120S (1959).
[27] J. L. Dormann, Rev. Phys. Appl. 16, 275 (1981).
[28] S. Mørup, J. Dumesic and H. Topsøe, in Applications of Mössbauer Spectroscopy, R. C. Cohen, ed., vol 2, Academic Press, New York, 1980, p. 1.
[29] D. Fiorani and J. L. Dormann, in Fundamental Properties of Nanostructured Materials, D. Fiorani and G. Sberveglieri, eds., World Scientific, 1994, p. 193.
[30] S. Chikazumi, Physics of Ferromagnetism, 2nd ed. Oxford Univ. Press, Oxford, (1997).
[31] F. Gazeau, J. C. Bacri, F. Gendron, R. Perzynski, Y. L. Raĭkher, V. I. Stepanov, and E. Dubois, J. Magn. Magn. Mater. 186, 175 (1998).
[32] G. K. Shenoy, F. E. Wagner and G. M. Kalvius, Mössbauer Isomer Shifts, North-Holland Publishing Co., New York, (1978).
[33] L. Néel, Ann. Geophys. 5, 99 (1949).
[34] W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).
[35] Ken Kundert, The Designer’s Guide Community, 2d, (2008).
[36] J. W. Fattaruso, M. De Wit, G. Warwar, K.-S. Tan, and R. K. Hester. IEEE J. S. S. Circuits. 25. 6, 1550 (1990).
[37] Kremer F., Schonhals A., Luck W. Broadband Dielectric Spectroscopy. – Springer-Verlag, (2002).
[38] O’Neill, Bowman, and Gregg, Appl. Phys. Lett., 77, 4 (2000).
[39] D. Viehland, S. J. Jang, and L. E. Cross, J. Appl. Phys., 68, 15 (1990).
[40] I. Rivera, Ashok Kumar, N. Ortega, R.S. Katiyar, Sergey Lushnikovb, S. S. Commun. 149,172 (2009).
[41] H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).
[42] R. W. Siegel, Ann. Rev. Mater. Sci. 21, 559 (1991).
[43] R. W. Siegel, Physics of new materials, (1994).
[44] F.E. Fujita (ed.), Springer Series in Materials Science, 27, Berlin: Springer.
[45] J. Ederth, L. B. Kish and C. G. Granqvist, Journal of Appl. Phys. 88, 6578 (2000).
[46] M. F. Becker, J. R. Brock, H. Cai, N. Chaudhary, D. Henneke, L. Hilsz, J.W. Keto, J. Lee, W.T. Nichols, and H.D. Glicksman,. ‘Nanoparticles generated by laser ablation’, In Proc. of the Joint NSF-NIST Conf. on Nanoparticles (1997).
[47] L. Patrone, D. Nelson, V. I. Safarov, S. Giorgio, M. Sentis, and W. Marine, Appl. Phys A: Mater. Sci. Process. 69, S217 (1999).
[48] N. D. S. Hayes, C. Saw, W. McLean, and M. Balooch, Proceedings of Boston, Nanophase and Nanocomposite Materials III (symp.F), November 29 – December 2 (1999).
[49] K. M. Hassan, A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, and R. M. Kolbas, Appl. Phys. Lett. 75, 1222 (1999).
[50] J. Zhou, L. Li. Gui, S. Buddhudu, and Y. Zhou, Appl. Phys. Lett. 76, 1540 (2000).
[51] J. Perrieere, E. Millon, Mchamarro, M. Morcrette and C. Andreazza. Appl. Phys. Lett. 78, 2949 (2001).
[52] W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and T. A. Marra, J. Amer. Ceram. Soc. 65, 324 (1982).
[53] W. R. Cannon, S. C. Danforth, J. S. Haggerty, and T. A. Marra, J. Amer. Ceram. Soc. 65, 330 (1982).
[54] M. Cauchetier, O. Croix, N. Herlin, and M. Luce, J Amer. Ceram. Soc. 77, 933 (1994).
[55] C. A. Grimes, D. Qian E. C. Dickey J. L. Allen and P. C. Eklund. J. Appl. Phys. 87, 5642 (2000).
[56] M. M. Kappes , M. Schar , P. Radi and E. Schumacher, J. Chem. Phys. 84, 1863 (1986).
[57] S. Yatsuya, T. Kamakura, K. Yamauchi and K. Mihama, Jpn. J. Appl. Phys. 25(1), L42 (1986).
[58] G.M. Chow, R. L. Holtz, A. Pattnaik and A. S. Edelstein, Appl. Phys. Lett. 59 (19), 1853 (1990).
[59] T. S. Wang, D. L. Yu, Y. J. Tian. F. R. Xiao, F. L. He, D. C. He, D. C. Li, W. K. Wang and L. Li, Chemical Phys. Lett. 334, 7 (2001).
[60] R. Uyeda, Prog. in Mater. Sci. 35, 1 (1991); S. K. Friedlander, ‘Synthesis of nanoparticles and their agglomerates: aerosol reactors’, In R&D status and trends, (1998) ed.
[61] S. K. Friedlander, H. D. Jang, and K. H. Ryu, Appl. Phy. Lett. 72(2), 173 (1998).
[62] M. R. Zachariah, ‘Flame processing, in-situ characterization, and atomistic modeling of nanoparticles’ in the reacting flow group at NIST. In Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering (May 25-27, Arlington, VA) (1994).
[63] H. F. Calcote, and D.G. Keil, ‘Combustion synthesis of silicon carbide powder’, In Proc. of the Joint NSF-NIST Conf. on Nanoparticles (1997).
[64] R. L. Axelbaum, ‘Developments in sodium/halide flame technology for the synthesis of unagglomerated non-oxide nanoparticles’, In Proc. of the Joint NSF-NIST Conference on Nanoparticles: Synthesis, Processing into Functional Nanostructures and Characterization (May 12-13, Arlington, VA) (1997).
[65] S. E. Pratsinis, ‘Precision synthesis of nanostructured particles’, In Proc. of the
Joint NSF-NIST Conf. on Nanoparticles (1997).
[66] T. Kameyama, K. Sakanaka and A. Motoe, J. Mater. Sci. 25, 1058 (1990).
[67] K. Ishizaki, T. Egashira, K. Tanaka and P. B. Celis, J. Mater. Sci. 24, 3553 (1989).
[68] S. Futaki, Y. Shimizu, K. Shiraishi, Y. Moriyoshi, T. Sato and T. Sakai, J Mater. Sci. 22, 4331 (1987).
[69] B. H. Kear, R.K. Sadangi, and S.C. Liao, ‘Synthesis of WC/Co/diamond nanocomposites’, In Proc. of the Joint NSF-NIST Conf. on Nanoparticles (1997).
[70] G. L. Messing, S. Zhang, U. Selvaraj, R.J. Santoro and T. Ni, ‘Synthesis of composite particles by spray pyrolysis’, In Proc. of the Joint NSF-NIST Conf. on Ultrafine Particle Engineering (May 25-27, Arlington, VA) (1994).
[71] J. F. de la Mora, I.G. Loscertales, J. Rosell-Llompart, K. Serageldin, and S. Brown, ‘Electrospray atomizers and ultrafine particles’, In Proc. Joint NSF-NIST Conf. on UltraFine Particle Engineering (May 25-27, 1994, Arlington, VA) (1994)
[72] C. C. Berndt, J. Karthikeyan, T. Chraska, and A.H. King, ‘Plasma spray synthesis of nanozirconia powder’, In Proc. of the Joint NSF-NIST Conf. on Nanoparticles (1997).
[73] S. Linderoth and S. Mørup, J. Appl. Phys. 67, 4496 (1990).
[74] R. Rosetti, J. L. Ellison, H. M. Gibson and L. E. Brus, J. Chem. Phys. 80, 4464 (1984).
[75] M. Meyer, C. Walberg, K. Kurihara and J. H. Fendler, J. Chem. Soc. Chem. Commun., 90 (1984).
[76] H. L. Larry and John K West, Chem. Rev. 90, 33 (1990).
[77] K. C. Lisa, Ann. Rev. Mater. Sci. 23, 437 (1993).
[78] S. Sakka and K. Kamiya, J. Non-Cryst. Solids 48, 31 (1982).
[79] M. Knobel, W. C. Nunes, L. M. Socolovsky, E. De Biasi, J. M. Varg as, and J. C. Denardin, J. Nanosci and Nanotech. 8, 2836, (2008).
[80] R. W. Chantrell and E. P. Wohlfarth, Phys. Status Solidi A 91, 619 (1985).
[81] I. G. Deae, J. F. Mitchell, and P. Schiffer, Phys. Rev. B, 63,172408 (2001).
[82] N. L. Huang and J. H. Van Vleck, J. Appl. Phys. 40, 1144 (1969).
[83] B. D. Cullity, Interduction of Magnetic Materials, Addison-Wesly reading, MA (1972).
[84] G. Hadjipanayis, D. J. Sellonyer, and B. Brandt, Phys Rev. B, 23,3349 (1981).
[85] H. B. Lal, J. Phys. C: Solid St. Phys. 13, 3969 (1980).
[86] P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Phys. Rev. B ,66, 052105 (2002).
[87] J. Rivas, J. Mira, B. Rivas-Murias, A. Fondado, J. Dec, W. Kleemann, and M. A. Señarís-Rodríguez, Appl. Phys. Lett. 88, 242906 (2006).
[88] G. Catalan, Appl. Phys. Lett., 88, 102902 (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code