Responsive image
博碩士論文 etd-0705111-125111 詳細資訊
Title page for etd-0705111-125111
論文名稱
Title
利用汞燈的光電壓效應以非接觸式電場調製反射光譜 研究c-平面氧化鋅的躍遷機制
Using photovoltaic effect of Hg lamp on contactless electroreflectance spectroscopy to study transition mechanism of c-plane ZnO
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-07-05
關鍵字
Keywords
光電壓效應、激子、內建電場、非接觸式電調製反射光譜、極性電場
Polarity field, photovoltaic effect, built-in electric field, exciton, Contactles Electroreflectance
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
實驗中我們使用光調製反射光譜(photoreflectance)和非接觸式電調製反射光譜(Contactles Electroreflectance)在溫度288 K下量測c-平面n-type doping ZnO的譜線,發現在光調製反射光譜和非接觸式電調製反射光譜中,Zn面的譜線相位相同、O面的譜線相位相反,這表示 Zn及O面的表面電場方向相反,因為氧化鋅在C軸上有極化電場,其方向是由O面指向Zn面,除了極化電場還存在空乏電場,空乏電場不論是Zn面或者O面其方向都是朝外,若載子濃度n≦1017(1/cm3),極化電場強度強過空乏電場,因此Zn面的電場是朝外而O面的電場是朝內,且Zn面電場的強度大於O面的。而後我們在非接觸式電調製反射光譜實驗過程中,添加了汞燈的變數,再利用勞倫茲的公式,使用三個能量A、B、C(即三個分裂能階)去做擬合,比較其擬合後的分裂能階偏移量;當樣品照射到汞燈後,其內建電場會衰減,我們的非接觸式電調製反射光譜中,加入汞燈光照的譜線有向高能量偏移(藍移)的傾向,且Zn面的偏移量大過O面的偏移量,我們可以知道氧化鋅的躍遷機制。
Abstract
Photo reflectance(PR) and Contactless electroreflectance(CER)spectra of Zn and O-faces of a c-plane ZnO bulk have been measured at room temperature, respectively. It was found that the phase of PR is the same as that of CER for the Zn-face and they are inverted for the O-face. This indicates a polarization induced field existing in the c- plane ZnO bulk due to nonzero spontaneous polarization. In addition, a mercury lamp was focused on the ZnO sample in the CER measurements to provide a photovoltaic voltage to reduce electric field in the sample. The CER spectrum with Hg lamp is more blue-shifted and its amplitude is smaller than that without Hg lamp. Hence, the type of transitions was classified as excitonic transition. The A, B, and C excitonic transition energies were obtained by fitting experimental spectra.
目次 Table of Contents
第一章 序論 1
第二章 半導體能帶理論 2
2.1能帶理論 2
2.2直接能隙與間接能隙 3
2.3激子 4
2.4空乏電場 4
2.5光電壓效應 6
第三章 調製光譜學 8
3.1調製光譜學簡介 8
3.2調製光譜與介電函數關係 8
3.3電子躍遷性質 9
3.4利用電子躍遷性質導出介電函數 11
3.5調製光譜學-低電場調製 14
第四章 樣品特性 17
4.1水熱法簡介 17
4.2氧化鋅(ZnO)樣品簡介 17
4.3氧化鋅(ZnO)光學特性 19
4.4氧化鋅(ZnO)能帶特性 19
第五章 實驗設置 22
5.1 PR實驗 22
5.2 CER實驗 23
5.3 CER實驗加上汞燈照射 23
5.4 相位分析 25
5.5 調製訊號分析 27
5.6 光感應電流理論 29
第六章 實驗結果 32
6.1 PR&CER光譜圖形比較 32
6.2 CER光譜圖形分析 33
6.3 CER光譜圖形擬合(fit) 35
6.4 偏移量理論計算Zn面 38
6.5 偏移量理論計算O面 40
6.6 偏移量理論計算Zn & O面 41
第七章 結論 42
參考資料 43
參考文獻 References
[1]M. Cardona, in Modulation Spectroscopy, Academic, New York, (1969).
[2]R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B 37, 4044, (1988).
[3]F. H. Pollak, and H. Shen, Modulation Spectroscopy Characterization of MOCVD Semiconductor Structures, Journal of Crystal Growth, 98, 53, (1989).
[4]S. M. Sze, in Semiconductor devices, physics and technology, Wiley, New York, (2002).
[5]D. F. Blossey, Wannier Exciton in an Electric Field. Ⅱ. Electroabsorption in Direct-Band-Gap Solids, Phys. Rev. B 2, 3976, (1970).
[6]B. G. StreetMan, and S. Banerjee, in Solid state electronic devices, 5th Edition, Prentice Hall International, (2000).
[7]D. E. Aspnes, in Handbook on Semiconductors,edited by M. Balkanski, Vol.2, p.109, North-Holland, New York, (1980).
[8]F. H. Pollak, in Hand book on Semiconductors,edited by M. Balkanski, North-Holland, New York, (1994).
[9]Hartmut Haug, Stephan W. Koch, in Quantum Theory of the Optical and Electronic Properties of Semiconductor Quantum Physics, (1994).
[10]P. Y. Yu and M. Cardona, in Fundamentals of Semiconductors:Physics and Materials Properties, New York,springer, (1996).
[11]Y. Sun, D. Jason, and M. N. R. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si, J. Phys. Chem. B, 110, 15186, (2006).
[12]D. Wang, C. Song, Z. Wu, W. Chen, X. Wu, Growth of ZnO prisms on self-source substrate, Materials Letters, 61, 205, (2007).
[13]F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfold,and J. H. Harding, Growth of ZnO thin films—experiment and theory, Journal of Materials Chemistry, 10.1039, (2004).
[14]G. Zwicker, and K. Jacobi, EXPERIMENTAL BAND STRUCTURE OF ZnO, Solid State Commun. 54, No.8 (1985).
[15]B. Meyer, and D. Marx, Density-functional study of the structure and stability of ZnO surfaces, PHYSICAL REVIEW B 67, 035403, (2003)
[16]Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301, (2005).
[17]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, J. Appl. Phys. 85, 6, (1999).
[18]B. Yaglioglu, Y. J. Huang, H. Y. Yeom, and D. C. Paine, A study of amorphous and crystalline phases in In 203-10 wt.% ZnO thin films deposited by DC magnetron sputtering, Thin Solid Films, 496, 89-94, (2006).
[19]S. OZAKI, T. MISHIMA, and S. ADACHI, Photoreflectance Spectroscopy of ZnO for Ordinary and Extraordinary Rays, Jpn. J. Appl. Phys. Vol. 42, 5465, (2003).
[20]A. Mang, K. Reimann, and S. Rübenacke, BAND GAPS, CRYSTAL-FIELD SPLITTING, SPIN-ORBIT COUPLING, AND EXCITON BINDING ENERGY IN ZnO UNDER HYDROSTATIC PRESSURE, Solid State Commun. 94, No.4, (1995).
[21]U.RÖSSLER┼, Energy Bands of Hexagonal 2-6 Semiconductors, Phy. Rev. Vol.184, Number1, (1969).
[22]Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Revnolds, Exciton spectrum of ZnO, phys. Rev. Vol. 14, Number 2, (1966).
[23]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell and W. C. Harsch, Valence-band ordering in ZnO, Phys. Rev. B 60, Number 4, (1999).
[24]M. W. Allen , P. Miller, J. B. Metson, R. J. Reeves , M. M. Alkaisi , and S. M. Durbin, Schottky Contact Behaviour as a Function of Metal and ZnO Surface Polarity, Mater. Res. Soc. Symp. Proc. Vol. 957, (2007).
[25]J. J. Harris, K. J. Lee, J. B. Webb, H. Tang, I. Harrison, L. B. Flannery, T. S. Cheng, and C. T. Foxon, The implications of spontaneouspolarization effects for carriertransport measurements in GaN, Semicond. Sci. Technol. 15, 413–417, (2000).
[26]D. P. Wang, C. C. Chen, T. L. Shen, T. M. Hsu, and W. C. Lee, Pumping‐beam‐induced photovoltaic effect on the photoreflectance of a δ‐doped GaAs film, J. Appl. Phys. 80, 6980, (1996).
[27]J. L. Shay, Photoreflectance Line Shape at the Fundamental Edge in Ultrapure GaAs, Phys. Rev. B2, 803–807, (1970).
[28]J. Nelson, The Physics of Solar Cells, Imperial College, London, Chap.1, (2003).
[29]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, ZnO Schottky ultraviolet photodetectors, Journal of Crystal Growth 225,110–113, (2001).
[30]X. Yin, H.-M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, Photoreflence study of the surface Fermi level at (001) n-andp-type GaAs surface,J. Vac. Sci. Technol. A 10, 131, (1992).
[31]R. Kudrawiec, M. Syperek, M. Motyka, and J. Misiewicz, Contactless electromodulation spectroscopy of AlGaN/GaN heterostructures with a two-dimensional electron gas: A comparison of photoreflectance and contactless electroreflectance, J. Appl. Phys. 100, 013501, (2006).
[32]M. W. Allen, and S. M. Durbin, Silver oxide Schottky contacts on n-type ZnO, Appl. Phys. Lett. 91, 053512, (1998).
[33]Y. MI, H. ODAKA, and S. Iwata, Electronic Structures and Optical properties of ZnO SnO2 and In2o3, J. Appl. Phys. 38, (2005).
[34]A. Wood, M. Giersig, M. Hilgendorff, Antonio Vilas-Campos, L. M. Liz-Marzán, and Paul Mulvaney, Size effect in ZnO: The Cluster to Quantum Dot Transition, Aust. J. Chem. 56, Part 1, No. 6A, (2003).
[35]L. E. Brus, Pioneering Effort II, J. Chem. Phys., 79, 5566, (1983).
[36]L. E. Brus, Structure and electronic states of quantum semiconductor crystallites, Nanostruct. Mater, 1, 71, (1992).
[37]S. Monticone, R. Tufeu, and A. V. Kanaev, Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles, J. Phys. Chem. B102, (1998).
[38]E. M. Wong, P. C. Searson, Kinetics of Electrophoretic Deposition of Zinc Oxide Quantum Particle Thin Films,Chem, Mater, 11, 1959, (1999).
[39]G. Redmond, A. O'Keeffe, C. Burgess, C. MacHale, and D. Fitzmaurice, Spectroscopic Determination of the Flatband Potential of Transparent Nanocrystalline ZnO Films, J. Phys. Chem., 97, 11081(1993).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.38.125
論文開放下載的時間是 校外不公開

Your IP address is 18.218.38.125
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code