Responsive image
博碩士論文 etd-0705111-174344 詳細資訊
Title page for etd-0705111-174344
論文名稱
Title
印尼奇蟾魚發音肌小清蛋白之研究
Study on parvalbumins in sonic muscle of the grunting toadfish (Allenbatrachus grunniens).
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-20
繳交日期
Date of Submission
2011-07-05
關鍵字
Keywords
小清蛋白、發音肌、印尼奇蟾魚
sonic muscle, parvalbumin, Allenbatrachus grunniens, grunting toadfish
統計
Statistics
本論文已被瀏覽 5677 次,被下載 1525
The thesis/dissertation has been browsed 5677 times, has been downloaded 1525 times.
中文摘要
蟾魚的發音肌是目前脊椎動物中收縮最快速的肌肉,並且肌肉細胞中鈣離子傳遞的速度和橫橋分離的速度也是脊椎動物中最快的。小清蛋白已知為肌肉細胞中之鈣結合蛋白,可幫助肌肉的放鬆。目前已知的小清蛋白具有數種等形,且在不同的肌肉細胞(例如:紅肌、白肌、粉紅肌)中,其表現量各異。印尼奇蟾魚(Allenbatrachus grunniens)的雌雄個體在魚鰾上皆有內生型發音肌。本論文比較雌雄個體發音肌形態,結果發現在長度、寬度、厚度及重量上,雌雄發音肌皆無顯著差異。再利用SDS-PAGE與西方墨點法分離及鑑定發音肌與體側肌中的小清蛋白,比較其總表現量,結果無顯著差異,顯示小清蛋白含量與肌肉放鬆速度並無一定關聯。進一步使用原態聚丙烯醯胺膠體電泳(Native-PAGE)分析印尼奇蟾
魚發音肌與體側肌中的小清蛋白等形,分別鑑定出2 種與4 種等形,其中小清蛋白等形1、小清蛋白等形2 及小清蛋白等形3 的分子量分別為10kDa、10.5kDa及10.5kDa,等電點為4.77、4.58及4.42。發音肌中主要為小清蛋白等形1 (Parv1),佔總小清蛋白的94%以上,其次為小清蛋白等形2 僅佔5%;而體側肌中主要為小清蛋白等形2,佔總小清蛋白的58%,其次為小清蛋白等形1(及小清蛋白等形1a)與小清蛋白等形3 各佔約20%。小清蛋白等形1 對印尼奇蟾魚發音肌的快速放鬆影響可能最大。
Abstract
The sonic muscle of toadfish is the fastest vertebrate muscle ever measured, and
the rate of transport of Ca2+ and dissociation of cross-bridge are also fatest.
Parvalbumins are Ca2+-binding proteins present in vertebrate muscle, and they can aid
muscle relaxation. Several isoforms of parvalbumin had been identified and presented
in variable proportion in different kinds of muscles (e.g. red muscle, white muscle and
pink muscle). Both male and female grunting toadfish (Allenbatrachus grunniens)
have intrinsic sonic muscles attached on swim bladders. The morphology of male and
female sonic muscle was compared, and no significant differences in both length,
width, thickness and weight were found. SDS-PAGE and western blotting were used
to determine the total parvalbumin expression and identify the parvalbumins from
sonic muscle and body white muscle. There were no significant differences in total
parvalbumin expression in sonic muscle and body white muscle. The result indicates
that there is no positive correlation between high content of parvalbumins and speed
of muscle relaxation. In native-PAGE, two and four parvalbumin isoforms were
identified from sonic muscle and body white muscle, respectively. The estimated size
of Parv1, Parv2 and Parv3 size in grunting toadfish’s sonic muscle were 10kDa,
10.5kDa and 10.5kDa, respectively, and the isoelectric points of Parv1, Parv2 and
Parv3 in grunting toadfish were 4.77, 4.58 and 4.42, respectively. In the sonic muscle,
the major parvalbumin isoform was parvalbumin isoform 1 (Parv1), which comprised
more than 94% of total parvalbumin, and parvalbumin isoform 2 (Pav2) comprised
vi
only 5% of total parvalbumin content. In body white muscle, on the other hand, the
major isoform was parvalbumin isoform 2 (Parv2) which comprised 58% of toal
parvalbumin. Both Parv1 (with Parv1a) and Parv3 comprised about 20%.
Parvalbumin isoforms were be discussed. The result supports that Parv1 has a highest
effect on the relaxation of the grunting-toadfish’s sonic muscle.
目次 Table of Contents
謝辭....................................................................................................................... i
中文摘要............................................................................................................... ii
英文摘要............................................................................................................... iii
目錄....................................................................................................................... v
圖目錄................................................................................................................... vi
表目錄................................................................................................................... viii
前言....................................................................................................................... 1
實驗材料與方法................................................................................................... 7
實驗結果............................................................................................................... 18
討論....................................................................................................................... 22
參考文獻............................................................................................................... 28
圖........................................................................................................................... 33
表........................................................................................................................... 46
個人履歷............................................................................................................... 48
參考文獻 References
王世晞、陳德皓、徐志宏(譯)。1995。Luis C. Junqueira, Jose Carneiro, and Robert O. Kelly著。基礎組織學(Basic Histology)。台北市。藝軒。

王慧群。2010。印尼奇蟾魚 (Allenbatrachus grunniens)的魚鰾形態與其聲音類型。國立中山大學海洋生物研究所碩士論文。71頁。

林淵智。2008,大鼻孔叫姑魚(Johnius macrorhynus)生物音學特性及發音肌蛋白質體學研究。國立台灣海洋大學環境生物與漁業科學學系博士論文。125頁。

粘珮嫆。2009。三種叫姑魚(石首魚科)雌雄發聲肌蛋白質體差異之研究。國立中山大學海洋生物研究所碩士論文。39頁。

Appelt, D., V. Shen, and C. Franzini-Armstrong. 1991. Quantitation of Ca ATPase, feet and mitochondria in superfast muscle fibres from the toadfish, Opsanus tau. Journal of Muscle Research and Cell Motility 12: 543-52.

Baron G., J. Demaille, and E. Dutruge. 1975. The distribution of parvalbumins in muscle and in other tissues. FEBS Letters. 56: 156-160.

Bass, A. H. and M. A. Marchaterre. 1989. Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. Journal of Comparative Neurology 286: 141-153.

Campbell, N. A. and J. B. Reece. 2002. Biology (6th ed.). Pearson Education.

Carlson, B. A. and Bass, A. H. 2000. Sonic / vocal motor pathways in squirrelfish (Teleostei, Holocentridae). Brain, Behavior and Evolution 56: 14-28.

Connaughton, M. A. 2004. Sound generation in the searobin (Prionotus carolinus), a fish withalternate sonic muscle contraction. Journal of Experimental Biology 207: 1643-1654.

Dos Santos, M. E., T. Modesto, R. J. Matos, M. S. Grober, R. Oliveira, and A. Canário. 2000. Sound production by the Lusitanian toadfish, Halobatrachus didactylus. Bioacoustics 10: 309-321.

Fine, M. L., B. Bernard, and T. M. Harris. 1993. Functional morphology of toadfish sonic muscle fibers: relationship to possible fiber division. Canadian Journal of Zoology 71: 2262-2274.

Fine, M. L., K. L. Malloy, C. King, S. L. Mitchell, and T. M. Cameron. 2001. Movement and sound generation by the toadfish swimbladder. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 187: 371-379.

Focant B, F. Mélot, S. Collin, A. Chikou, P. Vandewalle, and F. Huriaux. 1999. Muscle parvalbumin isoforms of Clarias gariepinus, Heterobranchus longifilis and Chrysichthys auratus: isolation, characterization and expression during development. Journal of Fish Biology 54: 832-851.

Gerday, C. 1982. Soluble calcium-binding proteins from fish and invertebrate muscle. Molecular Physiology 2: 63–87.

Goodman M., J.F. Pechère, J. Haiech, and J.G. Demaille. 1979. Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. Journal of Molecular Evolution 13: 331-52.

Greenfield, D. W., R. Winterbottom, and B. B. Collette. 2008. Review of the toadfish genera(teleostei: Batrachoididae). Proceedings of the California Academy of Sciences 59: 665-710.

Hill, G. L., M. L. Fine, and J. A. Musick. 1987. Ontogeny of the sexually dimorphic sonic muscle in three sciaenid species. Copeia 3: 708-713.

Kaatz, I. M. 2002. Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics 12: 230-232.

Liu G.M., N. Wang, Q.F. Cai, Li T, L.C. Sun, W.J. Su, and M. J. Cao. 2010. Purification and characterization of parvalbumins from silver carp (Hypophthalmichthy molitrix). Journal of the Science of Food and Agriculture 90: 1034-1040.

Luczkovich, J. J., D. A. Mann, and R. A. Rountree. 2008. Passive acoustics as a tool in fisheries science. Transactions of the American Fisheries Society 137:533-541.

Nelson J. S. 2006. Fishes of the World. (4th ed.). John Wiley & Sons, Inc., New York.

Parmentier, E., J. P. Lagardere, J. B. Braquegnier, P. Vandewalle, and M. L. Fine. 2006. Sound production mechanism in carapid fish: first example with a slow sonic muscle. Journal of Experimental Biology 209: 2952-2960.

Rice, A. N. and A. H. Bass. 2009. Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae. Journal of Experimental Biology 212: 1377-1391.

Rome, L. C. and S. L. Lindstedt. 1998. The quest for speed: muscles built for high-frequency contractions. News in Physiological Sciences 13: 261-268.

Rome, L. C., Cook, C., Syme, D. A., Connaughton, M. A., Ashley-Ross, M., Klimov, A., Tikunov, B. and Y. E. Goldman. 1999. Trading force for speed: why superfast crossbridge kinetics leads to superlow forces. Proceedings of The National Academy of Sciences of The United States of America 96: 5826-5831.

Rome, L. C., Syme, D. A., Hollingworth, S., S. L. Lindstedt, and S. M. Baylor. 1996. The whistle and the rattle: the design of sound producing muscles. Proceedings of The National Academy of Sciences of The United States of America 93: 8095-8100.

Rome L. C. 2006. Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Annual Review of Physiology 68: 193–221

Rountree, R. A., R. G. Gilmore, C. A. Goudey, A. D.Hawkins, J. Luczkovich, and D. A. Mann. 2006. Listening to fish: applications of passive acoustics to fisheries science. Fisheries 31: 433–446.

Sprague, M. W. 2000. The single sonic muscle twitch model for the soundproduction mechanism in the weakfish, Cynoscion regalis. Journal of the Acoustical Society of America 108: 2430-2437.

Tikunov, B. A., and L. C. Rome. 2009. Is high concentration of parvalbumin a requirement for superfast relaxation? Journal of Muscle Research and Cell Motility 30: 57-65.

Wilwert , J. L., N. M. Madhoun, and D. J. Coughlin. 2006. Parvalbumin correlates with relaxation rate in the swimming muscle of sheepshead and kingfish. Journal of Experimental Biology 209: 227-237.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code